• Baker, J. A., A. J. Watson, and G. K. Vallis, 2020: Meridional overturning circulation in a multi-basin model. Part I: Dependence on Southern Ocean buoyancy forcing. J. Phys. Oceanogr., 50, 11591178, https://doi.org/10.1175/JPO-D-19-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, J. A., A. J. Watson, and G. K. Vallis, 2021: Meridional overturning circulation in a multibasin model. Part II: Sensitivity to diffusivity and wind in warm and cool climates. J. Phys. Oceanogr., 51, 18131828, https://doi.org/10.1175/JPO-D-20-0121.1.

    • Search Google Scholar
    • Export Citation
  • Bakker, P., and Coauthors, 2016: Fate of the Atlantic meridional overturning circulation: Strong decline under continued warming and Greenland melting. Geophys. Res. Lett., 43, 12 25212 260, https://doi.org/10.1002/2016GL070457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1984: Accelerating the convergence to equilibrium of ocean–climate models. J. Phys. Oceanogr., 14, 666673, https://doi.org/10.1175/1520-0485(1984)014<0666:ATCTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, A., A. L. Stewart, J. F. Adkins, R. Ferrari, M. F. Jansen, and A. F. Thompson, 2015: The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanography, 30, 10211039, https://doi.org/10.1002/2015PA002778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cael, B. B., and M. F. Jansen, 2020: On freshwater fluxes and the Atlantic meridional overturning circulation. Limnol. Oceanogr. Lett., 5, 185192, https://doi.org/10.1002/lol2.10125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, E. C., E. A. Wilson, G. K. Moore, S. C. Riser, C. E. Brayton, M. R. Mazloff, and L. D. Talley, 2019: Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, 570, 319325, https://doi.org/10.1038/s41586-019-1294-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., 2019: The global overturning circulation. Annu. Rev. Mar. Sci., 11, 249270, https://doi.org/10.1146/annurev-marine-010318-095241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., J. C. H. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, W. B., and D. W. Oppo, 2005: Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, A. M., D. M. Sigman, J. R. Toggweiler, and J. L. Russell, 2007: Effect of global ocean temperature change on deep ocean ventilation. Paleoceanography, 22, PA2210, https://doi.org/10.1029/2005PA001242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278282, https://doi.org/10.1038/nclimate2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Verdière, A. C., and L. Te Raa, 2010: Weak oceanic heat transport as a cause of the instability of glacial climates. Climate Dyn., 35, 12371256, https://doi.org/10.1007/s00382-009-0675-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, H. F., R. Ferrari, and J. Callies, 2020: Abyssal circulation driven by near-boundary mixing: Water mass transformations and interior stratification. J. Phys. Oceanogr., 50, 22032226, https://doi.org/10.1175/JPO-D-19-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., S. L. Weber, and E. van der Swaluw, 2011: The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Climate Dyn., 37, 15751586, https://doi.org/10.1007/s00382-010-0930-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., L.-P. Nadeau, D. P. Marshall, L. C. Allison, and H. L. Johnson, 2017: A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr., 47, 28872906, https://doi.org/10.1175/JPO-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., M. O. Baringer, S. Dong, R. C. Perez, and Q. Yao, 2013: South Atlantic meridional fluxes. Deep-Sea Res. I, 71, 2132, https://doi.org/10.1016/j.dsr.2012.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heuzé, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2013: Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett., 40, 14091414, https://doi.org/10.1002/grl.50287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., 2017: Glacial ocean circulation and stratification explained by reduced atmospheric temperature. Proc. Natl. Acad. Sci. USA, 114, 4550, https://doi.org/10.1073/pnas.1610438113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and L.-P. Nadeau, 2016: The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr., 46, 34553470, https://doi.org/10.1175/JPO-D-16-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., L.-P. Nadeau, and T. M. Merlis, 2018: Transient versus equilibrium response of the ocean’s overturning circulation to warming. J. Climate, 31, 51475163, https://doi.org/10.1175/JCLI-D-17-0797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2016: Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr., 46, 11571169, https://doi.org/10.1175/JPO-D-15-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., S.-P. Xie, Z. Liu, and J. Zhu, 2017: Overlooked possibility of a collapsed atlantic meridional overturning circulation in warming climate. Sci. Adv., 3, e1601666, https://doi.org/10.1126/sciadv.1601666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2006: Glacial thermohaline circulation and climate: Forcing from the north or south? Adv. Atmos. Sci., 23, 199206, https://doi.org/10.1007/s00376-006-0199-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loving, J. L., and G. K. Vallis, 2005: Mechanisms for climate variability during glacial and interglacial periods. Paleoceanography, 20, PA4024, https://doi.org/10.1029/2004PA001113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the last glacial maximum. Science, 316, 6669, https://doi.org/10.1126/science.1137127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7, 523, https://doi.org/10.1175/1520-0442(1994)007<0005:MCROAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., W. Park, and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Climate Dyn., 40, 20052022, https://doi.org/10.1007/s00382-012-1586-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzocchi, A., and M. F. Jansen, 2017: Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophys. Res. Lett., 44, 62866295, https://doi.org/10.1002/2017GL073936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignac, D., D. Ferreira, and K. Haines, 2019: Decoupled freshwater transport and meridional overturning in the South Atlantic. Geophys. Res. Lett., 46, 21782186, https://doi.org/10.1029/2018GL081328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadeau, L.-P., and M. F. Jansen, 2020: Overturning circulation pathways in a two-basin ocean model. J. Phys. Oceanogr., 50, 21052122, https://doi.org/10.1175/JPO-D-20-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadeau, L.-P., R. Ferrari, and M. F. Jansen, 2019: Antarctic sea ice control on the depth of North Atlantic deep water. J. Climate, 32, 25372551, https://doi.org/10.1175/JCLI-D-18-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reintges, A., T. Martin, M. Latif, and W. Park, 2017: Physical controls of Southern Ocean deep-convection variability in CMIP5 models and the Kiel Climate Model. Geophys. Res. Lett., 44, 69516958, https://doi.org/10.1002/2017GL074087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadai, S., A. Condron, R. DeConto, and D. Pollard, 2020: Future climate response to Antarctic ice sheet melt caused by anthropogenic warming. Sci. Adv., 6, eaaz1169, https://doi.org/10.1126/sciadv.aaz1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmittner, A., K. J. Meissner, M. Eby, and A. J. Weaver, 2002: Forcing of the deep ocean circulation in simulations of the Last Glacial Maximum. Paleoceanogr. Paleoclimatol., 17, 1015, https://doi.org/10.1029/2001PA000633.

    • Search Google Scholar
    • Export Citation
  • Sellar, A. A., and Coauthors, 2020: Implementation of U.K. Earth system models for CMIP6. J. Adv. Model. Earth Syst., 12, e2019MS001946, https://doi.org/10.1029/2019MS001946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. A., D. S. Battisti, and C. M. Bitz, 2014: A heuristic model of Dansgaard–Oeschger cycles. Part I: Description, results, and sensitivity studies. J. Climate, 27, 43374358, https://doi.org/10.1175/JCLI-D-12-00672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., 2004: Time scales of climate response. J. Climate, 17, 209217, https://doi.org/10.1175/1520-0442(2004)017<0209:TSOCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., I. Eisenman, L. Zanna, and A. L. Stewart, 2020a: Surface constraints on the depth of the Atlantic meridional overturning circulation: Southern Ocean versus North Atlantic. J. Climate, 33, 31253149, https://doi.org/10.1175/JCLI-D-19-0546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., A. F. Thompson, and I. Eisenman, 2020b: Transient overturning compensation between Atlantic and Indo-Pacific basins. J. Phys. Oceanogr., 50, 21512172, https://doi.org/10.1175/JPO-D-20-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, and T. Bischoff, 2016: A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr., 46, 25832604, https://doi.org/10.1175/JPO-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., and W. R. Peltier, 2016: Thermohaline instability and the formation of glacial North Atlantic super polynyas at the onset of Dansgaard–Oeschger warming events. Geophys. Res. Lett., 43, 53365344, https://doi.org/10.1002/2016GL068891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, S. L., and Coauthors, 2007: The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Climate Past, 3, 5164, https://doi.org/10.5194/cp-3-51-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2015: Multiple regimes and low-frequency variability in the quasi-adiabatic overturning circulation. J. Phys. Oceanogr., 45, 16901708, https://doi.org/10.1175/JPO-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, and L. Jia, 2017: Diagnosis of decadal predictability of Southern Ocean Sea surface temperature in the GFDL CM2.1 model. J. Climate, 30, 63096328, https://doi.org/10.1175/JCLI-D-16-0537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, W. Cooke, and X. Yang, 2019: Natural variability of southern ocean convection as a driver of observed climate trends. Nat. Climate Change, 9, 5965, https://doi.org/10.1038/s41558-018-0350-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, W. Cooke, H. Goosse, M. Bushuk, Y. Morioka, and X. Yang, 2021: The dependence of internal multidecadal variability in the Southern Ocean on the ocean background mean state. J. Climate, 34, 10611080, https://doi.org/10.1175/JCLI-D-20-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 121 121 121
Full Text Views 38 38 38
PDF Downloads 54 54 54

The Time-Dependent Response of a Two-Basin Ocean to a Sudden Surface Temperature Change

View More View Less
  • 1 aDepartment of the Geophysical Sciences, University of Chicago, Chicago, Illinois
Restricted access

Abstract

Building on previous work using single-basin models, we here explore the time-dependent response of the Atlantic meridional overturning circulation (AMOC) to a sudden global temperature change in a two-basin ocean–ice model. We find that the previously identified mechanisms remain qualitatively useful to explain the transient and the long-term time-mean responses of the AMOC in our simulations. Specifically, we find an initial weakening of the AMOC in response to warming (and vice versa for cooling), controlled by the mid-depth meridional temperature contrast across the Atlantic basin. The long-term mean response instead is controlled primarily by changes in the abyssal stratification within the basin. In contrast to previous studies we find that for small-amplitude surface temperature changes, the equilibrium AMOC is almost unchanged, as the abyssal stratification remains similar due to a substantial compensation between the effects of salinity and temperature changes. The temperature-driven stratification change results from the differential warming/cooling between North Atlantic Deep Water and Antarctic Bottom Water, while the salinity change is driven by changes in Antarctic sea ice formation. Another distinct feature of our simulations is the emergence of AMOC variability in the much colder and much warmer climates. We discuss how this variability is related to variations in deep-ocean heat content, surface salinity, and sea ice in the deep convective regions, both in the North Atlantic and in the Southern Ocean, and its potential relevance to past and future climates.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chiung-Yin Chang, cychang@princeton.edu

Abstract

Building on previous work using single-basin models, we here explore the time-dependent response of the Atlantic meridional overturning circulation (AMOC) to a sudden global temperature change in a two-basin ocean–ice model. We find that the previously identified mechanisms remain qualitatively useful to explain the transient and the long-term time-mean responses of the AMOC in our simulations. Specifically, we find an initial weakening of the AMOC in response to warming (and vice versa for cooling), controlled by the mid-depth meridional temperature contrast across the Atlantic basin. The long-term mean response instead is controlled primarily by changes in the abyssal stratification within the basin. In contrast to previous studies we find that for small-amplitude surface temperature changes, the equilibrium AMOC is almost unchanged, as the abyssal stratification remains similar due to a substantial compensation between the effects of salinity and temperature changes. The temperature-driven stratification change results from the differential warming/cooling between North Atlantic Deep Water and Antarctic Bottom Water, while the salinity change is driven by changes in Antarctic sea ice formation. Another distinct feature of our simulations is the emergence of AMOC variability in the much colder and much warmer climates. We discuss how this variability is related to variations in deep-ocean heat content, surface salinity, and sea ice in the deep convective regions, both in the North Atlantic and in the Southern Ocean, and its potential relevance to past and future climates.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chiung-Yin Chang, cychang@princeton.edu
Save