• Berg, N., and A. Hall, 2017: Anthropogenic warming impacts on California snowpack during drought. Geophys. Res. Lett., 44, 25112518, https://doi.org/10.1002/2016GL072104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., J. Sheffield, and P. C. D. Milly, 2017: Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett., 44, 236244, https://doi.org/10.1002/2016GL071921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, E. J., and S. J. Brown, 2008: Evaluating uncertainties in the projection of future drought. J. Hydrometeor., 9, 292299, https://doi.org/10.1175/2007JHM929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, E. J., S. J. Brown, and N. Christidis, 2006: Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeor., 7, 11131125, https://doi.org/10.1175/JHM544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., A. Dai, and Y. Zhang, 2019: Projected changes in daily variability and seasonal cycle of near-surface air temperature over the globe during the twenty-first century. J. Climate, 32, 85378561, https://doi.org/10.1175/JCLI-D-19-0438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., A. Dai, Y. Zhang, and K. L. Rasmussen, 2020: Changes in the convective potential available energy and convective inhibition under global warming. J. Climate, 33, 20252050, https://doi.org/10.1175/JCLI-D-19-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 10291136.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, https://doi.org/10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. S. Mankin, and K. J. Anchukaitis, 2018: Climate change and drought: From past to future. Curr. Climate Change Rep., 4, 164179, https://doi.org/10.1007/s40641-018-0093-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. S. Mankin, K. Marvel, A. P. Williams, J. E. Smerdon, and K. J. Anchukaitis, 2020: Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future, 8, e2019EF001461, https://doi.org/10.1029/2019EF001461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011a: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, https://doi.org/10.1002/wcc.81.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011b: Characteristics and trends in various forms of the Palmer drought severity index during 1900–2008. J. Geophys. Res., 116, D12115, https://doi.org/10.1029/2010JD015541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013a: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013b: The influence of the inter-decadal Pacific Oscillation on U.S. precipitation during 1923–2010. Climate Dyn., 41, 633646, https://doi.org/10.1007/s00382-012-1446-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2021: Hydroclimatic trends during 1950–2018 over global land. Climate Dyn., 56, 40274049, https://doi.org/10.1007/s00382-021-05684-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. Zhao, 2017: Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change, 144, 519533, https://doi.org/10.1007/s10584-016-1705-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and C. E. Bloecker, 2019: Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Climate Dyn., 52, 289306, https://doi.org/10.1007/s00382-018-4132-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and J. Deng, 2021: Arctic amplification weakens the variability of daily temperatures over northern mid-to-high latitudes. J. Climate, 34, 25912609, https://doi.org/10.1175/JCLI-D-20-0514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Zhao, and J. Chen, 2018: Climate change and drought: A precipitation and evaporation perspective. Curr. Climate Change Rep., 4, 301312, https://doi.org/10.1007/s40641-018-0101-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, https://doi.org/10.1029/2012GL052459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, and L. O. Mearns, 2000: Climate extremes: Observations, modeling and impacts. Science, 289, 20682074, https://doi.org/10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under warming climate. Atmos. Chem. Phys., 13, 10 08110 094, https://doi.org/10.5194/acp-13-10081-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and S. Feng, 2014: Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos., 119, 78637875, https://doi.org/10.1002/2014JD021608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., E. Coppola, and F. Raffaele, 2018: Threatening levels of cumulative stress due to hydroclimatic extremes in the 21st century. Climate Atmos. Sci., 1, 18, https://doi.org/10.1038/s41612-018-0028-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, J. Perlwitz, X. Quan, T. Zhang, and P. Pegion, 2012: On the increased frequency of mediterranean drought. J. Climate, 25, 21462161, https://doi.org/10.1175/JCLI-D-11-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedlacek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, https://doi.org/10.1007/s00382-012-1564-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. J. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2020: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13, 35713605, https://doi.org/10.5194/gmd-13-3571-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp., http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and Coauthors, 2014: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA, 111, 32623267, https://doi.org/10.1073/pnas.1222473110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, https://doi.org/10.1029/2012GL052910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, https://doi.org/10.1175/JCLI-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2015: Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Climate, 28, 55835600, https://doi.org/10.1175/JCLI-D-14-00480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., J. S. Mankin, S. Coats, and H. Liu, 2021: CO2-plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett., 16, 034018, https://doi.org/10.1088/1748-9326/abd8fd.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., T. J. Osborn, Y. Kushnir, I. R. Simpson, J. Nakamura, and H. Liu, 2019: Climate variability and change of Mediterranean-type climates. J. Climate, 32, 28872915, https://doi.org/10.1175/JCLI-D-18-0472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Biasutti, A. Giannini, S. J. Camargo, and M. Rojas, 2013: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Climate, 26, 73287351, https://doi.org/10.1175/JCLI-D-12-00726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2008: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 31, 79105, https://doi.org/10.1007/s00382-007-0340-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1993: Evaporation. Handbook of Hydrology, D. R. Maidment, Ed., McGraw‐Hill, 4.14.53.

  • Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, https://doi.org/10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, I. H., E. Burke, L. McColl, P. D. Falloon, G. R. Harris, and D. McNeall, 2013: The impact of climate mitigation on projections of future drought. Hydrol. Earth Syst. Sci., 17, 23392358, https://doi.org/10.5194/hess-17-2339-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., R. Seager, C. Li, H. Liu, and N. Henderson, 2018: Mechanism of future spring drying in the southwestern United States in CMIP5 models. J. Climate, 31, 42654279, https://doi.org/10.1175/JCLI-D-17-0574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, https://doi.org/10.1175/JHM600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, https://doi.org/10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente‐Serrano, S. M., T. R. Mc, D. G. Vicar, Y. Miralles, Y. Yang, and M. Tomas‐Burguera, 2020: Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdiscip. Rev.: Climate Change, 11, e632, https://doi.org/10.1002/wcc.632.

    • Search Google Scholar
    • Export Citation
  • Wang, G. L., 2005: Agricultural drought in a future climate: Results from 15 global climate models participating in the IPCC 4th assessment. Climate Dyn., 25, 739753, https://doi.org/10.1007/s00382-005-0057-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M., D. R. Easterling, J. H. Lawrimore, R. R. Heim, R. S. Vose, and B. D. Santer, 2011: Projections of future drought in the continental United States and Mexico. J. Hydrometeor., 12, 13591377, https://doi.org/10.1175/2011JHM1351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer drought severity index. J. Climate, 17, 23352351, https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, L. Zhang, and L. Zou, 2019: Future intensification of the water cycle with an enhanced annual cycle over global land monsoon regions. J. Climate, 32, 54375452, https://doi.org/10.1175/JCLI-D-18-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the 21st century under a low–moderate emissions scenario. J. Climate, 28, 44904512, https://doi.org/10.1175/JCLI-D-14-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2017: Uncertainties in historical changes and future projections of drought. Part II: Model simulated historical and future drought changes. Climatic Change, 144, 535548, https://doi.org/10.1007/s10584-016-1742-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 113 113 113
Full Text Views 34 34 34
PDF Downloads 48 48 48

CMIP6 Model-Projected Hydroclimatic and Drought Changes and Their Causes in the Twenty-First Century

View More View Less
  • 1 aKey Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 bDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
Restricted access

Abstract

Drought is projected to become more severe and widespread as global warming continues in the twenty-first century, but hydroclimatic changes and their drivers are not well examined in the latest projections from phase 6 of the Coupled Model Intercomparison Project (CMIP6). Here, precipitation (P), evapotranspiration (E), soil moisture (SM), and runoff (R) from 25 CMIP6 models, together with self-calibrated Palmer drought severity index with Penman–Monteith potential evapotranspiration (scPDSIpm), are analyzed to quantify hydroclimatic and drought changes in the twenty-first century and the underlying causes. Results confirm consistent drying in these hydroclimatic metrics across most of the Americas (including the Amazon), Europe and the Mediterranean region, southern Africa, and Australia, although the drying magnitude differs, with the drying being more severe and widespread in surface SM than in total SM. Global drought frequency based on surface SM and scPDSIpm increases by ∼25%–100% (50%–200%) under the SSP2-4.5 (SSP5-8.5) scenario in the twenty-first century together with large increases in drought duration and areas, which result from a decrease in the mean and flattening of the probability distribution functions of SM and scPDSIpm, while the R-based drought changes are relatively small. Changes in both P and E contribute to the SM change, whereas scPDSIpm decreases result from ubiquitous PET increases and P decreases over subtropical areas. The R changes are determined primarily by P changes, while the PET change explains most of the E increase. Intermodel spreads in surface SM and R changes are large, leading to large uncertainties in the drought projections.

SIGNIFICANCE STATEMENT

Drought may become more severe and widespread under greenhouse gas (GHG)-induced global warming in the twenty-first century based on model projections. However, there are still large uncertainties in projected future drought changes, especially regarding the extent to which drought changes depend on drought indices and the future emissions scenarios analyzed. The latest projections from CMIP6 models reaffirm the widespread drying and increases in agricultural drought by up to 200% over most of the Americas (including the Amazon), Europe and the Mediterranean region, southern Africa, Southeast Asia, and Australia under moderate-to-high emissions scenarios in the twenty-first century, despite large uncertainties in individual projections partly due to internal variability. Ubiquitous increases in atmospheric demand for moisture under rising temperatures and precipitation decreases over many subtropical regions are the main driver of the projected drying and drought increases.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Aiguo Dai, adai@albany.edu; Tianbao Zhao, zhaotb@tea.ac.cn

Abstract

Drought is projected to become more severe and widespread as global warming continues in the twenty-first century, but hydroclimatic changes and their drivers are not well examined in the latest projections from phase 6 of the Coupled Model Intercomparison Project (CMIP6). Here, precipitation (P), evapotranspiration (E), soil moisture (SM), and runoff (R) from 25 CMIP6 models, together with self-calibrated Palmer drought severity index with Penman–Monteith potential evapotranspiration (scPDSIpm), are analyzed to quantify hydroclimatic and drought changes in the twenty-first century and the underlying causes. Results confirm consistent drying in these hydroclimatic metrics across most of the Americas (including the Amazon), Europe and the Mediterranean region, southern Africa, and Australia, although the drying magnitude differs, with the drying being more severe and widespread in surface SM than in total SM. Global drought frequency based on surface SM and scPDSIpm increases by ∼25%–100% (50%–200%) under the SSP2-4.5 (SSP5-8.5) scenario in the twenty-first century together with large increases in drought duration and areas, which result from a decrease in the mean and flattening of the probability distribution functions of SM and scPDSIpm, while the R-based drought changes are relatively small. Changes in both P and E contribute to the SM change, whereas scPDSIpm decreases result from ubiquitous PET increases and P decreases over subtropical areas. The R changes are determined primarily by P changes, while the PET change explains most of the E increase. Intermodel spreads in surface SM and R changes are large, leading to large uncertainties in the drought projections.

SIGNIFICANCE STATEMENT

Drought may become more severe and widespread under greenhouse gas (GHG)-induced global warming in the twenty-first century based on model projections. However, there are still large uncertainties in projected future drought changes, especially regarding the extent to which drought changes depend on drought indices and the future emissions scenarios analyzed. The latest projections from CMIP6 models reaffirm the widespread drying and increases in agricultural drought by up to 200% over most of the Americas (including the Amazon), Europe and the Mediterranean region, southern Africa, Southeast Asia, and Australia under moderate-to-high emissions scenarios in the twenty-first century, despite large uncertainties in individual projections partly due to internal variability. Ubiquitous increases in atmospheric demand for moisture under rising temperatures and precipitation decreases over many subtropical regions are the main driver of the projected drying and drought increases.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Aiguo Dai, adai@albany.edu; Tianbao Zhao, zhaotb@tea.ac.cn

Supplementary Materials

    • Supplemental Materials (pdf 6.18 MB)
Save