Jump to Content Jump to Main Navigation
Logo Logo Logo Logo Logo Logo
Artificial Intelligence for the Earth Systems Bulletin of the American Meteorological Society Community Science Earth Interactions Journal of Applied Meteorology and Climatology Journal of Atmospheric and Oceanic Technology Journal of Climate Journal of Hydrometeorology Journal of Physical Oceanography Journal of the Atmospheric Sciences Monthly Weather Review Weather and Forecasting Weather, Climate, and Society Meteorological Monographs
BROWSE PUBLISH SUBSCRIBE ABOUT
Sign in Sign up
Advanced Search Help
Logo Logo Logo Logo Logo Logo
Sign in Sign up
Artificial Intelligence for the Earth Systems Bulletin of the American Meteorological Society Community Science Earth Interactions Journal of Applied Meteorology and Climatology Journal of Atmospheric and Oceanic Technology Journal of Climate Journal of Hydrometeorology Journal of Physical Oceanography Journal of the Atmospheric Sciences Monthly Weather Review Weather and Forecasting Weather, Climate, and Society Meteorological Monographs
BROWSE PUBLISH SUBSCRIBE ABOUT
Advanced Search Help

 
Cover Journal of Climate
Journal of Climate
  • Abstract
    • Significance Statement
  • 1. Introduction
  • 2. Boundary layer and surface heat, momentum, and gas flux responses
    • a. Turbulent heat flux response
    • b. Turbulent momentum flux and MABL wind responses
      • 1) Mesoscale SST effects
      • 2) Mesoscale current effects
    • c. Analytic framework for SST-induced boundary layer response
    • d. Modulation of air–sea fluxes of tracers
  • 3. Free-tropospheric, extratropical atmospheric circulation responses
    • a. Time-mean general circulation responses
    • b. Synoptic storms and storm track responses
    • c. Near-surface wind convergence and vertical motion over the WBCs
    • d. Nonlocal downstream atmospheric circulation responses
    • e. Climate change
  • 4. Feedback of atmospheric responses onto the ocean
    • a. Feedback on ocean circulation
      • 1) Thermal feedback effect
      • 2) Current feedback effect
    • b. Wave–current interactions near ocean fronts
    • c. Physics of ocean mesoscale processes and air–sea interaction
    • d. Impacts on primary productivity
  • 5. State of observational capabilities
    • a. In situ observations
    • b. Remote sensing
  • 6. Discussion and synthesis
    • a. Attribution of near-surface wind convergence
    • b. Robust diagnostic framework
    • c. Large-scale impacts in climate models
    • d. Coordinated climate modeling and improved physical parameterizations
    • e. Air–sea interaction mediated by ocean submesoscale and sea state
    • f. Air–sea gas flux exchange and ocean biogeochemistry processes
    • g. Final remarks
  • Acknowledgments.
  • Data availability statement.
  • REFERENCES
ProCite
RefWorks
Reference Manager
BibTeX
Zotero
EndNote
  • Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 2963–2978, https://doi.org/10.1175/1520-0442(1997)010<2963:SFVOTN>2.0.CO;2.

      Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 2963–2978, https://doi.org/10.1175/1520-0442(1997)010<2963:SFVOTN>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., S. Shin, J. D. Scott, E. Curchitser, and C. Stock, 2020: The response of the northwest Atlantic Ocean to climate change. J. Climate, 33, 405–428, https://doi.org/10.1175/JCLI-D-19-0117.1.

      Alexander, M. A., S. Shin, J. D. Scott, E. Curchitser, and C. Stock, 2020: The response of the northwest Atlantic Ocean to climate change. J. Climate, 33, 405–428, https://doi.org/10.1175/JCLI-D-19-0117.1.)| false
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., S. T. Gille, D. Menemenlis, C. B. Rocha, N. Rascle, B. Chapron, J. Gula, and J. Molemaker, 2017: Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. Oceans, 122, 4500–4517, https://doi.org/10.1002/2016JC012413.

      Ardhuin, F., S. T. Gille, D. Menemenlis, C. B. Rocha, N. Rascle, B. Chapron, J. Gula, and J. Molemaker, 2017: Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. Oceans, 122, 4500–4517, https://doi.org/10.1002/2016JC012413.)| false
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2019: Observing sea states. Front. Mar. Sci., 6, 124, https://doi.org/10.3389/fmars.2019.00124.

      Ardhuin, F., and Coauthors, 2019: Observing sea states. Front. Mar. Sci., 6, 124, https://doi.org/10.3389/fmars.2019.00124.)| false
    • Search Google Scholar
    • Export Citation
  • Ayet, A., and B. Chapron, 2022: The dynamical coupling of wind-waves and atmospheric turbulence: A review of theoretical and phenomenological models. Bound.-Layer Meteor., 183 (1), 1–33, https://doi.org/10.1007/s10546-021-00666-6.

      Ayet, A., and B. Chapron, 2022: The dynamical coupling of wind-waves and atmospheric turbulence: A review of theoretical and phenomenological models. Bound.-Layer Meteor., 183 (1), 1–33, https://doi.org/10.1007/s10546-021-00666-6.)| false
    • Search Google Scholar
    • Export Citation
  • Ayet, A., N. Rascle, B. Chapron, F. Couvreux, and L. Terray, 2021: Uncovering air–sea interaction in oceanic submesoscale frontal regions using high-resolution satellite observations. U.S. CLIVAR Variations, Vol. 19, U.S CLIVAR Project Office, Washington, DC, 10–17, https://usclivar.org/newsletters.

  • Bachman, S. D., J. R. Taylor, K. A. Adams, and P. J. Hosegood, 2017: Mesoscale and submesoscale effects on mixed layer depth in the southern ocean. J. Phys. Oceanogr., 47, 2173–2188, https://doi.org/10.1175/JPO-D-17-0034.1.

      Bachman, S. D., J. R. Taylor, K. A. Adams, and P. J. Hosegood, 2017: Mesoscale and submesoscale effects on mixed layer depth in the southern ocean. J. Phys. Oceanogr., 47, 2173–2188, https://doi.org/10.1175/JPO-D-17-0034.1.)| false
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, and F. O. Bryan, 2020: A diagnosis of anisotropic eddy diffusion from a high-resolution global ocean model. J. Adv. Model. Earth Syst., 12, e2019MS001904, https://doi.org/10.1029/2019MS001904.

      Bachman, S. D., B. Fox-Kemper, and F. O. Bryan, 2020: A diagnosis of anisotropic eddy diffusion from a high-resolution global ocean model. J. Adv. Model. Earth Syst., 12, e2019MS001904, https://doi.org/10.1029/2019MS001904.)| false
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., E. S. Sarachik, and A. C. Hirst, 1999: A consistent model for the large-scale steady surface atmospheric circulation in the tropics. J. Climate, 12, 2956–2964, https://doi.org/10.1175/1520-0442(1999)012<2956:ACMFTL>2.0.CO;2.

      Battisti, D. S., E. S. Sarachik, and A. C. Hirst, 1999: A consistent model for the large-scale steady surface atmospheric circulation in the tropics. J. Climate, 12, 2956–2964, https://doi.org/10.1175/1520-0442(1999)012<2956:ACMFTL>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Beal, R. C., V. N. Kudryavtsev, D. R. Thompson, S. A. Grodsky, D. G. Tilley, V. A. Dulov, and H. C. Graber, 1997: The influence of the marine atmospheric boundary layer on ERS 1 synthetic aperture radar imagery of the Gulf Stream. J. Geophys. Res., 102, 5799–5814, https://doi.org/10.1029/96JC03109.

      Beal, R. C., V. N. Kudryavtsev, D. R. Thompson, S. A. Grodsky, D. G. Tilley, V. A. Dulov, and H. C. Graber, 1997: The influence of the marine atmospheric boundary layer on ERS 1 synthetic aperture radar imagery of the Gulf Stream. J. Geophys. Res., 102, 5799–5814, https://doi.org/10.1029/96JC03109.)| false
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., and Coauthors, 2021: Air–sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations. Climate Dyn., 56, 2093–2111, https://doi.org/10.1007/s00382-020-05573-z.

      Bellucci, A., and Coauthors, 2021: Air–sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations. Climate Dyn., 56, 2093–2111, https://doi.org/10.1007/s00382-020-05573-z.)| false
    • Search Google Scholar
    • Export Citation
  • Belmonte Rivas, M., and A. Stoffelen, 2019: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019.

      Belmonte Rivas, M., and A. Stoffelen, 2019: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019.)| false
    • Search Google Scholar
    • Export Citation
  • Bigorre, S. P., R. A. Weller, J. B. Edson, and J. D. Ware, 2013: A surface mooring for air– sea interaction research in the Gulf Stream. Part II: Analysis of the observations and their accuracies. J. Atmos. Oceanic Technol., 30, 450–469, https://doi.org/10.1175/JTECH-D-12-00078.1.

      Bigorre, S. P., R. A. Weller, J. B. Edson, and J. D. Ware, 2013: A surface mooring for air– sea interaction research in the Gulf Stream. Part II: Analysis of the observations and their accuracies. J. Atmos. Oceanic Technol., 30, 450–469, https://doi.org/10.1175/JTECH-D-12-00078.1.)| false
    • Search Google Scholar
    • Export Citation
  • Bilgen, S. I., and B. P. Kirtman, 2020: Impact of ocean model resolution on understanding the delayed warming of the Southern Ocean. Environ. Res. Lett., 15, 114012, https://doi.org/10.1088/1748-9326/abbc3e.

      Bilgen, S. I., and B. P. Kirtman, 2020: Impact of ocean model resolution on understanding the delayed warming of the Southern Ocean. Environ. Res. Lett., 15, 114012, https://doi.org/10.1088/1748-9326/abbc3e.)| false
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 8207–8221, https://doi.org/10.1175/JCLI-D-17-0159.1.

      Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 8207–8221, https://doi.org/10.1175/JCLI-D-17-0159.1.)| false
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, and F. O. Bryan, 2020: The global sink of available potential energy by mesoscale air–sea interaction. J. Adv. Model. Earth Syst., 12, e2020MS002118, https://doi.org/10.1029/2020MS002118.

      Bishop, S. P., R. J. Small, and F. O. Bryan, 2020: The global sink of available potential energy by mesoscale air–sea interaction. J. Adv. Model. Earth Syst., 12, e2020MS002118, https://doi.org/10.1029/2020MS002118.)| false
    • Search Google Scholar
    • Export Citation
  • Bladé, I., 1997: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10, 2087–2106, https://doi.org/10.1175/1520-0442(1997)010<2087:TIOMOA>2.0.CO;2.

      Bladé, I., 1997: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10, 2087–2106, https://doi.org/10.1175/1520-0442(1997)010<2087:TIOMOA>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2017: EUREC4A: A field campaign to elucidate the couplings between clouds, convection and circulation. Surv. Geophys., 38, 1529–1568, https://doi.org/10.1007/s10712-017-9428-0.

      Bony, S., and Coauthors, 2017: EUREC4A: A field campaign to elucidate the couplings between clouds, convection and circulation. Surv. Geophys., 38, 1529–1568, https://doi.org/10.1007/s10712-017-9428-0.)| false
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. A. Thompson, J. Patoux, K. A. Kelly, and S. Dickinson, 2010: The signature of midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 1160–1174, https://doi.org/10.1175/2009JCLI3064.1.

      Booth, J. F., L. A. Thompson, J. Patoux, K. A. Kelly, and S. Dickinson, 2010: The signature of midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 1160–1174, https://doi.org/10.1175/2009JCLI3064.1.)| false
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. A. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 1241–1256, https://doi.org/10.1175/MWR-D-11-00195.1.

      Booth, J. F., L. A. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 1241–1256, https://doi.org/10.1175/MWR-D-11-00195.1.)| false
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., Y.-O. Kwon, S. Ko, R. J. Small, and R. Msadek, 2017: Spatial patterns and intensity of the surface storm tracks in CMIP5 models. J. Climate, 30, 4965–4981, https://doi.org/10.1175/JCLI-D-16-0228.1.

      Booth, J. F., Y.-O. Kwon, S. Ko, R. J. Small, and R. Msadek, 2017: Spatial patterns and intensity of the surface storm tracks in CMIP5 models. J. Climate, 30, 4965–4981, https://doi.org/10.1175/JCLI-D-16-0228.1.)| false
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and Coauthors, 2013: High-latitude ocean and sea ice surface fluxes: Requirements and challenges for climate research. Bull. Amer. Meteor. Soc., 94, 403–423, https://doi.org/10.1175/BAMS-D-11-00244.1.

      Bourassa, M. A., and Coauthors, 2013: High-latitude ocean and sea ice surface fluxes: Requirements and challenges for climate research. Bull. Amer. Meteor. Soc., 94, 403–423, https://doi.org/10.1175/BAMS-D-11-00244.1.)| false
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., E. Rodríguez, and D. Chelton, 2016: Winds and Currents Mission: Ability to observe mesoscale AIR/SEA coupling. 2016 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Beijing, China, Institute of Electrical and Electronics Engineers, 7392–7395, https://doi.org/10.1109/IGARSS.2016.7730928.

  • Bourassa, M. A., and Coauthors, 2019: Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Front. Mar. Sci., 6, 443, https://doi.org/10.3389/fmars.2019.00443.

      Bourassa, M. A., and Coauthors, 2019: Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Front. Mar. Sci., 6, 443, https://doi.org/10.3389/fmars.2019.00443.)| false
    • Search Google Scholar
    • Export Citation
  • Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 1847–1853, https://doi.org/10.1175/JCLI-D-11-00329.1.

      Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 1847–1853, https://doi.org/10.1175/JCLI-D-11-00329.1.)| false
    • Search Google Scholar
    • Export Citation
  • Brankart, J.-M., 2013: Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling. Ocean Modell., 66, 64–76, https://doi.org/10.1016/j.ocemod.2013.02.004.

      Brankart, J.-M., 2013: Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling. Ocean Modell., 66, 64–76, https://doi.org/10.1016/j.ocemod.2013.02.004.)| false
    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 6277–6291, https://doi.org/10.1175/2010JCLI3665.1.

      Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 6277–6291, https://doi.org/10.1175/2010JCLI3665.1.)| false
    • Search Google Scholar
    • Export Citation
  • Bye, J. A. T., 1986: Momentum exchange at the sea surface by wind stress and understress. Quart. J. Roy. Meteor. Soc., 112, 501–510, https://doi.org/10.1002/qj.49711247212.

      Bye, J. A. T., 1986: Momentum exchange at the sea surface by wind stress and understress. Quart. J. Roy. Meteor. Soc., 112, 501–510, https://doi.org/10.1002/qj.49711247212.)| false
    • Search Google Scholar
    • Export Citation
  • Byrne, D., L. Papritz, I. Frenger, M. Münnich, and N. Gruber, 2015: Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J. Atmos. Sci., 72, 1872–1890, https://doi.org/10.1175/JAS-D-14-0195.1.

      Byrne, D., L. Papritz, I. Frenger, M. Münnich, and N. Gruber, 2015: Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J. Atmos. Sci., 72, 1872–1890, https://doi.org/10.1175/JAS-D-14-0195.1.)| false
    • Search Google Scholar
    • Export Citation
  • Cabrera, M., M. Santini, L. Lima, J. Carvalho, E. Rosa, C. Rodrigues, and L. Pezzi, 2022: The southwestern Atlantic Ocean mesoscale eddies: A review of their role in the air–sea interaction processes. J. Mar. Syst., 235, 103785, https://doi.org/10.1016/j.jmarsys.2022.103785.

      Cabrera, M., M. Santini, L. Lima, J. Carvalho, E. Rosa, C. Rodrigues, and L. Pezzi, 2022: The southwestern Atlantic Ocean mesoscale eddies: A review of their role in the air–sea interaction processes. J. Mar. Syst., 235, 103785, https://doi.org/10.1016/j.jmarsys.2022.103785.)| false
    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., B. Fox-Kemper, and M. Hemer, 2012: Wind waves in the coupled climate system. Bull. Amer. Meteor. Soc., 93, 1651–1661, https://doi.org/10.1175/BAMS-D-11-00170.1.

      Cavaleri, L., B. Fox-Kemper, and M. Hemer, 2012: Wind waves in the coupled climate system. Bull. Amer. Meteor. Soc., 93, 1651–1661, https://doi.org/10.1175/BAMS-D-11-00170.1.)| false
    • Search Google Scholar
    • Export Citation
  • Centurioni, L. R., and Coauthors, 2019: Global in situ observations of essential climate and ocean variables at the air–sea interface. Front. Mar. Sci., 6, 419, https://doi.org/10.3389/fmars.2019.00419.

      Centurioni, L. R., and Coauthors, 2019: Global in situ observations of essential climate and ocean variables at the air–sea interface. Front. Mar. Sci., 6, 419, https://doi.org/10.3389/fmars.2019.00419.)| false
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 2038–2053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

      Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 2038–2053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 999–1015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

      Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 999–1015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

      Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2020: An unprecedented set of high-resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst., 12, e2020MS002298, https://doi.org/10.1029/2020MS002298.

      Chang, P., and Coauthors, 2020: An unprecedented set of high-resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst., 12, e2020MS002298, https://doi.org/10.1029/2020MS002298.)| false
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci., 4, 136–162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

      Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci., 4, 136–162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Charrassin, J.-B., and Coauthors, 2008: Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc. Natl. Acad. Sci. USA, 105, 11 634–11 639, https://doi.org/10.1073/pnas.0800790105.

      Charrassin, J.-B., and Coauthors, 2008: Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc. Natl. Acad. Sci. USA, 105, 11 634–11 639, https://doi.org/10.1073/pnas.0800790105.)| false
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 2005: The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J. Climate, 18, 530–550, https://doi.org/10.1175/JCLI-3275.1.

      Chelton, D. B., 2005: The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J. Climate, 18, 530–550, https://doi.org/10.1175/JCLI-3275.1.)| false
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 1479–1498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

      Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 1479–1498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978–983, https://doi.org/10.1126/science.1091901.

      Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978–983, https://doi.org/10.1126/science.1091901.)| false
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495–517, https://doi.org/10.1175/JPO3025.1.

      Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495–517, https://doi.org/10.1175/JPO3025.1.)| false
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., P. Gaube, M. G. Schlax, J. J. Early, and R. M. Samelson, 2011a: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334, 328–332, https://doi.org/10.1126/science.1208897.

      Chelton, D. B., P. Gaube, M. G. Schlax, J. J. Early, and R. M. Samelson, 2011a: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334, 328–332, https://doi.org/10.1126/science.1208897.)| false
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011b: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002.

      Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011b: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002.)| false
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., J. B. Edson, A. Paget, R. Graham, and B. Greenwood, 2019: The effects of rainfall on the atmosphere and the ocean during SPURS-2. Oceanography, 32, 86–97, https://doi.org/10.5670/oceanog.2019.216.

      Clayson, C. A., J. B. Edson, A. Paget, R. Graham, and B. Greenwood, 2019: The effects of rainfall on the atmosphere and the ocean during SPURS-2. Oceanography, 32, 86–97, https://doi.org/10.5670/oceanog.2019.216.)| false
    • Search Google Scholar
    • Export Citation
  • Cravatte, S., and Coauthors, 2016: First report of TPOS 2020. Tech. Rep. GOOS-215, 200 pp., http://tpos2020.org/first-report/.

  • Cronin, M. F., S. Legg, and P. Zuidema, 2009: Climate research: Best practices for process studies. Bull. Amer. Meteor. Soc., 90, 917–918, https://doi.org/10.1175/2009BAMS2622.1.

      Cronin, M. F., S. Legg, and P. Zuidema, 2009: Climate research: Best practices for process studies. Bull. Amer. Meteor. Soc., 90, 917–918, https://doi.org/10.1175/2009BAMS2622.1.)| false
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and Coauthors, 2019: Air–sea fluxes with a focus on heat and momentum. Front. Mar. Sci., 6, 430, https://doi.org/10.3389/fmars.2019.00430.

      Cronin, M. F., and Coauthors, 2019: Air–sea fluxes with a focus on heat and momentum. Front. Mar. Sci., 6, 430, https://doi.org/10.3389/fmars.2019.00430.)| false
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and Coauthors, 2022: Developing an Observing Air–Sea Interactions Strategy (OASIS) for the global ocean. ICES J. Mar. Sci., 2022, fsac149, https://doi.org/10.1093/icesjms/fsac149.

      Cronin, M. F., and Coauthors, 2022: Developing an Observing Air–Sea Interactions Strategy (OASIS) for the global ocean. ICES J. Mar. Sci., 2022, fsac149, https://doi.org/10.1093/icesjms/fsac149.)| false
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and N. Blunt, 2011: A new mechanism for ocean–atmosphere coupling in midlatitudes. Quart. J. Roy. Meteor. Soc., 137, 1095–1101, https://doi.org/10.1002/qj.814.

      Czaja, A., and N. Blunt, 2011: A new mechanism for ocean–atmosphere coupling in midlatitudes. Quart. J. Roy. Meteor. Soc., 137, 1095–1101, https://doi.org/10.1002/qj.814.)| false
    • Search Google Scholar
    • Export Citation
  • Czaja, A., C. Frankignoul, S. Minobe, and B. Vannière, 2019: Simulating the midlatitude atmospheric circulation: What might we gain from high-resolution modeling of air–sea interactions? Curr. Climate Change Rep., 5, 390–406, https://doi.org/10.1007/s40641-019-00148-5.

      Czaja, A., C. Frankignoul, S. Minobe, and B. Vannière, 2019: Simulating the midlatitude atmospheric circulation: What might we gain from high-resolution modeling of air–sea interactions? Curr. Climate Change Rep., 5, 390–406, https://doi.org/10.1007/s40641-019-00148-5.)| false
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101–115, https://doi.org/10.1146/annurev-marine-010213-135138.

      D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101–115, https://doi.org/10.1146/annurev-marine-010213-135138.)| false
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318–322, https://doi.org/10.1126/science.1201515.

      D’Asaro, E. A., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318–322, https://doi.org/10.1126/science.1201515.)| false
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2018: Ocean convergence and dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 1162–1167, https://doi.org/10.1073/pnas.1718453115.

      D’Asaro, E. A., and Coauthors, 2018: Ocean convergence and dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 1162–1167, https://doi.org/10.1073/pnas.1718453115.)| false
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

      de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.)| false
    • Search Google Scholar
    • Export Citation
  • Deike, L., and W. K. Melville, 2018: Gas transfer by breaking waves. Geophys. Res. Lett., 45, 10 482–10 492, https://doi.org/10.1029/2018GL078758.

      Deike, L., and W. K. Melville, 2018: Gas transfer by breaking waves. Geophys. Res. Lett., 45, 10 482–10 492, https://doi.org/10.1029/2018GL078758.)| false
    • Search Google Scholar
    • Export Citation
  • de Kloe, J., A. Stoffelen, and A. Verhoef, 2017: Improved use of scatterometer measurements by using stress-equivalent reference winds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 2340–2347, https://doi.org/10.1109/JSTARS.2017.2685242.

      de Kloe, J., A. Stoffelen, and A. Verhoef, 2017: Improved use of scatterometer measurements by using stress-equivalent reference winds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 2340–2347, https://doi.org/10.1109/JSTARS.2017.2685242.)| false
    • Search Google Scholar
    • Export Citation
  • Deser, C., S. Wahl, and J. J. Bates, 1993: The influence of sea surface temperature gradients on stratiform cloudiness along the equatorial front in the Pacific Ocean. J. Climate, 6, 1172–1180, https://doi.org/10.1175/1520-0442(1993)006<1172:TIOSST>2.0.CO;2.

      Deser, C., S. Wahl, and J. J. Bates, 1993: The influence of sea surface temperature gradients on stratiform cloudiness along the equatorial front in the Pacific Ocean. J. Climate, 6, 1172–1180, https://doi.org/10.1175/1520-0442(1993)006<1172:TIOSST>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 4751–4767, https://doi.org/10.1175/JCLI4278.1.

      Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 4751–4767, https://doi.org/10.1175/JCLI4278.1.)| false
    • Search Google Scholar
    • Export Citation
  • Deskos, G., J. C. Y. Lee, C. Draxl, and M. A. Sprague, 2021: Review of wind-wave coupling models for large-eddy simulation of the marine atmospheric boundary layer. J. Atmos. Sci., 78, 3025–3045, https://doi.org/10.1175/JAS-D-21-0003.1.

      Deskos, G., J. C. Y. Lee, C. Draxl, and M. A. Sprague, 2021: Review of wind-wave coupling models for large-eddy simulation of the marine atmospheric boundary layer. J. Atmos. Sci., 78, 3025–3045, https://doi.org/10.1175/JAS-D-21-0003.1.)| false
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and C. S. Bretherton, 2004: Quasi-Lagrangian large eddy simulations of cross-equatorial flow in the east Pacific atmospheric boundary layer. J. Atmos. Sci., 61, 1837–1858, https://doi.org/10.1175/1520-0469(2004)061<1837:QLESOC>2.0.CO;2.

      de Szoeke, S. P., and C. S. Bretherton, 2004: Quasi-Lagrangian large eddy simulations of cross-equatorial flow in the east Pacific atmospheric boundary layer. J. Atmos. Sci., 61, 1837–1858, https://doi.org/10.1175/1520-0469(2004)061<1837:QLESOC>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and E. D. Maloney, 2020: Atmospheric mixed layer convergence from observed MJO sea surface temperature anomalies. J. Climate, 33, 547–558, https://doi.org/10.1175/JCLI-D-19-0351.1.

      de Szoeke, S. P., and E. D. Maloney, 2020: Atmospheric mixed layer convergence from observed MJO sea surface temperature anomalies. J. Climate, 33, 547–558, https://doi.org/10.1175/JCLI-D-19-0351.1.)| false
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air–sea interaction in TOGA COARE and DYNAMO. J. Climate, 28, 597–622, https://doi.org/10.1175/JCLI-D-14-00477.1.

      de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air–sea interaction in TOGA COARE and DYNAMO. J. Climate, 28, 597–622, https://doi.org/10.1175/JCLI-D-14-00477.1.)| false
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 1653–1667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.

      Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 1653–1667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Domingues, R., and Coauthors, 2019: Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci., 6, 446, https://doi.org/10.3389/fmars.2019.00446.

      Domingues, R., and Coauthors, 2019: Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci., 6, 446, https://doi.org/10.3389/fmars.2019.00446.)| false
    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020: The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr., 50, 2649–2667, https://doi.org/10.1175/JPO-D-20-0043.1.

      Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020: The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr., 50, 2649–2667, https://doi.org/10.1175/JPO-D-20-0043.1.)| false
    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2021: The scale and activity of symmetric instability estimated from a global submesoscale-permitting ocean model. J. Phys. Oceanogr., 51, 1655–1670, https://doi.org/10.1175/JPO-D-20-0159.1.

      Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2021: The scale and activity of symmetric instability estimated from a global submesoscale-permitting ocean model. J. Phys. Oceanogr., 51, 1655–1670, https://doi.org/10.1175/JPO-D-20-0159.1.)| false
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity Experiment. Bull. Amer. Meteor. Soc., 98, 2113–2134, https://doi.org/10.1175/BAMS-D-16-0055.1.

      Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity Experiment. Bull. Amer. Meteor. Soc., 98, 2113–2134, https://doi.org/10.1175/BAMS-D-16-0055.1.)| false
    • Search Google Scholar
    • Export Citation
  • Drivas, T. D., D. D. Holm, and J.-M. Leahy, 2020: Lagrangian averaged stochastic advection by Lie transport for fluids. J. Stat. Phys., 179, 1304–1342, https://doi.org/10.1007/s10955-020-02493-4.

      Drivas, T. D., D. D. Holm, and J.-M. Leahy, 2020: Lagrangian averaged stochastic advection by Lie transport for fluids. J. Stat. Phys., 179, 1304–1342, https://doi.org/10.1007/s10955-020-02493-4.)| false
    • Search Google Scholar
    • Export Citation
  • Dufois, F., and Coauthors, 2017: Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies. Geophys. Res. Lett., 44, 3255–3264, https://doi.org/10.1002/2016GL072371.

      Dufois, F., and Coauthors, 2017: Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies. Geophys. Res. Lett., 44, 3255–3264, https://doi.org/10.1002/2016GL072371.)| false
    • Search Google Scholar
    • Export Citation
  • du Plessis, M., S. Swart, I. J. Ansorge, A. Mahadevan, and A. F. Thompson, 2019: Southern ocean seasonal restratification delayed by submesoscale wind–front interactions. J. Phys. Oceanogr., 49, 1035–1053, https://doi.org/10.1175/JPO-D-18-0136.1.

      du Plessis, M., S. Swart, I. J. Ansorge, A. Mahadevan, and A. F. Thompson, 2019: Southern ocean seasonal restratification delayed by submesoscale wind–front interactions. J. Phys. Oceanogr., 49, 1035–1053, https://doi.org/10.1175/JPO-D-18-0136.1.)| false
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52, https://doi.org/10.3402/tellusa.v1i3.8507.

      Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52, https://doi.org/10.3402/tellusa.v1i3.8507.)| false
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2011: Direct-covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange experiment. J. Geophys. Res., 116, C00F10, https://doi.org/10.1029/2011JC007022.

      Edson, J. B., and Coauthors, 2011: Direct-covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange experiment. J. Geophys. Res., 116, C00F10, https://doi.org/10.1029/2011JC007022.)| false
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1.

      Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1.)| false
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 3747–3764, https://doi.org/10.1029/95JC03205.

      Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 3747–3764, https://doi.org/10.1029/95JC03205.)| false
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and Coauthors, 2011: Implementation of the Coupled Ocean–Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3. J. Geophys. Res., 116, C00F09, https://doi.org/10.1029/2010JC006884.

      Fairall, C. W., and Coauthors, 2011: Implementation of the Coupled Ocean–Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3. J. Geophys. Res., 116, C00F09, https://doi.org/10.1029/2010JC006884.)| false
    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., and Coauthors, 2020: S-MODE: The sub-mesoscale ocean dynamics experiment. IGARSS 2020–2020 IEEE Int. Geoscience and Remote Sensing Symp., Waikoloa, HI, Institute of Electrical and Electronics Engineers, 3533–3536, https://doi.org/10.1109/IGARSS39084.2020.9323112.

  • Feliks, Y., M. Ghil, and E. Simonnet, 2004: Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 61, 961–981, https://doi.org/10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2.

      Feliks, Y., M. Ghil, and E. Simonnet, 2004: Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 61, 961–981, https://doi.org/10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., and C. Frankignoul, 2005: The transient atmospheric response to midlatitude SST anomalies. J. Climate, 18, 1049–1067, https://doi.org/10.1175/JCLI-3313.1.

      Ferreira, D., and C. Frankignoul, 2005: The transient atmospheric response to midlatitude SST anomalies. J. Climate, 18, 1049–1067, https://doi.org/10.1175/JCLI-3313.1.)| false
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., and C. Frankignoul, 2008: Transient atmospheric response to interactive SST anomalies. J. Climate, 21, 576–583, https://doi.org/10.1175/2007JCLI1704.1.

      Ferreira, D., and C. Frankignoul, 2008: Transient atmospheric response to interactive SST anomalies. J. Climate, 21, 576–583, https://doi.org/10.1175/2007JCLI1704.1.)| false
    • Search Google Scholar
    • Export Citation
  • Foussard, A., G. Lapeyre, and R. Plougonven, 2019a: Response of surface wind divergence to mesoscale SST anomalies under different wind conditions. J. Atmos. Sci., 76, 2065–2082, https://doi.org/10.1175/JAS-D-18-0204.1.

      Foussard, A., G. Lapeyre, and R. Plougonven, 2019a: Response of surface wind divergence to mesoscale SST anomalies under different wind conditions. J. Atmos. Sci., 76, 2065–2082, https://doi.org/10.1175/JAS-D-18-0204.1.)| false
    • Search Google Scholar
    • Export Citation
  • Foussard, A., G. Lapeyre, and R. Plougonven, 2019b: Storm track response to oceanic eddies in idealized atmospheric simulations. J. Climate, 32, 445–463, https://doi.org/10.1175/JCLI-D-18-0415.1.

      Foussard, A., G. Lapeyre, and R. Plougonven, 2019b: Storm track response to oceanic eddies in idealized atmospheric simulations. J. Climate, 32, 445–463, https://doi.org/10.1175/JCLI-D-18-0415.1.)| false
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. I: Theory and diagnosis. J. Phys. Oceanogr., 38, 1145–1165, https://doi.org/10.1175/2007JPO3792.1.

      Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. I: Theory and diagnosis. J. Phys. Oceanogr., 38, 1145–1165, https://doi.org/10.1175/2007JPO3792.1.)| false
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 61–78, https://doi.org/10.1016/j.ocemod.2010.09.002.

      Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 61–78, https://doi.org/10.1016/j.ocemod.2010.09.002.)| false
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., L. Johnson, and F. Qiao, 2022: Ocean near-surface layers. Ocean Mixing, M. Meredith and A. N. Garabato, Eds., Elsevier, 65–94, https://doi.org/10.1016/B978-0-12-821512-8.00011-6.

  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in midlatitudes. Rev. Geophys., 23, 357–390, https://doi.org/10.1029/RG023i004p00357.

      Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in midlatitudes. Rev. Geophys., 23, 357–390, https://doi.org/10.1029/RG023i004p00357.)| false
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289–305, https://doi.org/10.3402/tellusa.v29i4.11362.

      Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289–305, https://doi.org/10.3402/tellusa.v29i4.11362.)| false
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennechael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762–777, https://doi.org/10.1175/2010JCLI3731.1.

      Frankignoul, C., N. Sennechael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762–777, https://doi.org/10.1175/2010JCLI3731.1.)| false
    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608–612, https://doi.org/10.1038/ngeo1863.

      Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608–612, https://doi.org/10.1038/ngeo1863.)| false
    • Search Google Scholar
    • Export Citation
  • Frenger, I., M. Münnich, and N. Gruber, 2018: Imprint of Southern Ocean mesoscale eddies on chlorophyll. Beigeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018.

      Frenger, I., M. Münnich, and N. Gruber, 2018: Imprint of Southern Ocean mesoscale eddies on chlorophyll. Beigeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018.)| false
    • Search Google Scholar
    • Export Citation
  • Frew, N. M., D. M. Glover, E. J. Bock, and S. J. McCue, 2007: A new approach to estimation of global air–sea gas transfer velocity fields using dual-frequency altimeter backscatter. J. Geophys. Res., 112, C11003, https://doi.org/10.1029/2006JC003819.

      Frew, N. M., D. M. Glover, E. J. Bock, and S. J. McCue, 2007: A new approach to estimation of global air–sea gas transfer velocity fields using dual-frequency altimeter backscatter. J. Geophys. Res., 112, C11003, https://doi.org/10.1029/2006JC003819.)| false
    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., and Coauthors, 1991: Air–sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96, 8593–8609, https://doi.org/10.1029/90JC02062.

      Friehe, C. A., and Coauthors, 1991: Air–sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96, 8593–8609, https://doi.org/10.1029/90JC02062.)| false
    • Search Google Scholar
    • Export Citation
  • Gade, M., and A. Stoffelen, 2019: An introduction to microwave remote sensing of the Asian seas. Remote Sensing of the Asian Seas, V. Barale and M. Gade, Eds., Springer, 81–101, https://doi.org/10.1007/978-3-319-94067-0_4.

  • Gaube, P., D. B. Chelton, P. G. Strutton, and M. J. Behrenfeld, 2013: Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans, 118, 6349–6370, https://doi.org/10.1002/2013JC009027.

      Gaube, P., D. B. Chelton, P. G. Strutton, and M. J. Behrenfeld, 2013: Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans, 118, 6349–6370, https://doi.org/10.1002/2013JC009027.)| false
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. J. McGillicuddy, D. B. Chelton, M. J. Behrenfeld, and P. G. Strutton, 2014: Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans, 119, 8195–8220, https://doi.org/10.1002/2014JC010111.

      Gaube, P., D. J. McGillicuddy, D. B. Chelton, M. J. Behrenfeld, and P. G. Strutton, 2014: Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans, 119, 8195–8220, https://doi.org/10.1002/2014JC010111.)| false
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104–132, https://doi.org/10.1175/JPO-D-14-0032.1.

      Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104–132, https://doi.org/10.1175/JPO-D-14-0032.1.)| false
    • Search Google Scholar
    • Export Citation
  • Gaube, P., C. C. Chickadel, R. Branch, and A. Jessup, 2019: Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale. Geophys. Res. Lett., 46, 2690–2695, https://doi.org/10.1029/2018GL080807.

      Gaube, P., C. C. Chickadel, R. Branch, and A. Jessup, 2019: Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale. Geophys. Res. Lett., 46, 2690–2695, https://doi.org/10.1029/2018GL080807.)| false
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

      Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., and Coauthors, 2020: FluxSat: Measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sens., 12, 1796, https://doi.org/10.3390/rs12111796.

      Gentemann, C. L., and Coauthors, 2020: FluxSat: Measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sens., 12, 1796, https://doi.org/10.3390/rs12111796.)| false
    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. Shaman, and Y. Kushnir, 2018: Mechanisms governing the development of the North Atlantic warming hole in the CESM-LE future climate simulations. J. Climate, 31, 5927–5946, https://doi.org/10.1175/JCLI-D-17-0635.1.

      Gervais, M., J. Shaman, and Y. Kushnir, 2018: Mechanisms governing the development of the North Atlantic warming hole in the CESM-LE future climate simulations. J. Climate, 31, 5927–5946, https://doi.org/10.1175/JCLI-D-17-0635.1.)| false
    • Search Google Scholar
    • Export Citation
  • Gommenginger, C., and Coauthors, 2019: SEASTAR: A mission to study ocean submesoscale dynamics and small-scale atmosphere–ocean processes in coastal, shelf and polar seas. Front. Mar. Sci., 6, 457, https://doi.org/10.3389/fmars.2019.00457.

      Gommenginger, C., and Coauthors, 2019: SEASTAR: A mission to study ocean submesoscale dynamics and small-scale atmosphere–ocean processes in coastal, shelf and polar seas. Front. Mar. Sci., 6, 457, https://doi.org/10.3389/fmars.2019.00457.)| false
    • Search Google Scholar
    • Export Citation
  • Graber, H. C., E. A. Terray, M. A. Donelan, W. M. Drennan, J. C. Van Leer, and D. B. Peters, 2000: ASIS—A new air–sea interaction spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17, 708–720, https://doi.org/10.1175/1520-0426(2000)017<0708:AANASI>2.0.CO;2.

      Graber, H. C., E. A. Terray, M. A. Donelan, W. M. Drennan, J. C. Van Leer, and D. B. Peters, 2000: ASIS—A new air–sea interaction spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17, 708–720, https://doi.org/10.1175/1520-0426(2000)017<0708:AANASI>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. A. Josey, B. Sinha, J. L. Catto, M. J. Roberts, and A. C. Coward, 2021: Future evolution of an eddy rich ocean associated with enhanced east Atlantic storminess in a coupled model projection. Geophys. Res. Lett., 48, e2021GL092719, https://doi.org/10.1029/2021GL092719.

      Grist, J. P., S. A. Josey, B. Sinha, J. L. Catto, M. J. Roberts, and A. C. Coward, 2021: Future evolution of an eddy rich ocean associated with enhanced east Atlantic storminess in a coupled model projection. Geophys. Res. Lett., 48, e2021GL092719, https://doi.org/10.1029/2021GL092719.)| false
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016.

      Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016.)| false
    • Search Google Scholar
    • Export Citation
  • Haines, K., and J. Marshall, 1987: Eddy-forced coherent structures as a prototype of atmospheric blocking. Quart. J. Roy. Meteor. Soc., 113, 681–704, https://doi.org/10.1002/qj.49711347613.

      Haines, K., and J. Marshall, 1987: Eddy-forced coherent structures as a prototype of atmospheric blocking. Quart. J. Roy. Meteor. Soc., 113, 681–704, https://doi.org/10.1002/qj.49711347613.)| false
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92–103, https://doi.org/10.1016/j.ocemod.2013.08.007.

      Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92–103, https://doi.org/10.1016/j.ocemod.2013.08.007.)| false
    • Search Google Scholar
    • Export Citation
  • Hand, R., N. Keenlyside, N.-E. Omrani, and M. Latif, 2014: Simulated response to inter-annual SST variations in the Gulf Stream region. Climate Dyn., 42, 715–731, https://doi.org/10.1007/s00382-013-1715-y.

      Hand, R., N. Keenlyside, N.-E. Omrani, and M. Latif, 2014: Simulated response to inter-annual SST variations in the Gulf Stream region. Climate Dyn., 42, 715–731, https://doi.org/10.1007/s00382-013-1715-y.)| false
    • Search Google Scholar
    • Export Citation
  • Haney, S., B. Fox-Kemper, K. Julien, and A. Webb, 2015: Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr., 45, 3033–3056, https://doi.org/10.1175/JPO-D-15-0044.1.

      Haney, S., B. Fox-Kemper, K. Julien, and A. Webb, 2015: Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr., 45, 3033–3056, https://doi.org/10.1175/JPO-D-15-0044.1.)| false
    • Search Google Scholar
    • Export Citation
  • Harcourt, R., and Coauthors, 2019: Animal-borne telemetry: An integral component of the ocean observing toolkit. Front. Mar. Sci., 6, 326, https://doi.org/10.3389/fmars.2019.00326.

      Harcourt, R., and Coauthors, 2019: Animal-borne telemetry: An integral component of the ocean observing toolkit. Front. Mar. Sci., 6, 326, https://doi.org/10.3389/fmars.2019.00326.)| false
    • Search Google Scholar
    • Export Citation
  • Harrison, C. S., M. C. Long, N. S. Lovenduski, and J. K. Moore, 2018: Mesoscale effects on carbon export: A global perspective. Global Biogeochem. Cycles, 32, 680–703, https://doi.org/10.1002/2017GB005751.

      Harrison, C. S., M. C. Long, N. S. Lovenduski, and J. K. Moore, 2018: Mesoscale effects on carbon export: A global perspective. Global Biogeochem. Cycles, 32, 680–703, https://doi.org/10.1002/2017GB005751.)| false
    • Search Google Scholar
    • Export Citation
  • Hashizume, H., S.-P. Xie, M. Fujiwara, M. Shiotani, T. Watanabe, Y. Tanimoto, W. T. Liu, and K. Takeuchi, 2002: Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific. J. Climate, 15, 3379–3393, https://doi.org/10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2.

      Hashizume, H., S.-P. Xie, M. Fujiwara, M. Shiotani, T. Watanabe, Y. Tanimoto, W. T. Liu, and K. Takeuchi, 2002: Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific. J. Climate, 15, 3379–3393, https://doi.org/10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Hausmann, U., D. J. McGillicuddy, and J. Marshall, 2017: Observed mesoscale eddy signatures in southern ocean surface mixed-layer depth. J. Geophys. Res. Oceans, 122, 617–635, https://doi.org/10.1002/2016JC012225.

      Hausmann, U., D. J. McGillicuddy, and J. Marshall, 2017: Observed mesoscale eddy signatures in southern ocean surface mixed-layer depth. J. Geophys. Res. Oceans, 122, 617–635, https://doi.org/10.1002/2016JC012225.)| false
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.

      Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.)| false
    • Search Google Scholar
    • Export Citation
  • Hayasaki, M., R. Kawamura, M. Mori, and M. Watanabe, 2013: Response of extratropical cyclone activity to the Kuroshio large meander in northern winter. Geophys. Res. Lett., 40, 2851–2855, https://doi.org/10.1002/grl.50546.

      Hayasaki, M., R. Kawamura, M. Mori, and M. Watanabe, 2013: Response of extratropical cyclone activity to the Kuroshio large meander in northern winter. Geophys. Res. Lett., 40, 2851–2855, https://doi.org/10.1002/grl.50546.)| false
    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 1500–1506, https://doi.org/10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2.

      Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 1500–1506, https://doi.org/10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.

      Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.)| false
    • Search Google Scholar
    • Export Citation
  • Hewitt, H. T., and Coauthors, 2020: Resolving and parameterising the ocean mesoscale in Earth system models. Curr. Climate Change Rep., 6, 137–152, https://doi.org/10.1007/s40641-020-00164-w.

      Hewitt, H. T., and Coauthors, 2020: Resolving and parameterising the ocean mesoscale in Earth system models. Curr. Climate Change Rep., 6, 137–152, https://doi.org/10.1007/s40641-020-00164-w.)| false
    • Search Google Scholar
    • Export Citation
  • Hirata, H., and M. Nonaka, 2021: Impacts of strong warm ocean currents on development of extratropical cyclones through the warm and cold conveyor belts: A review. Tropical and Extratropical Air–Sea Interactions: Modes of Climate Variations, S. K. Behera, Ed., Elsevier, 267–293, https://doi.org/10.1016/B978-0-12-818156-0.00014-9.

  • Hirata, H., R. Kawamura, M. Nonaka, and K. Tsuboki, 2019: Significant impact of heat supply from the Gulf Stream on a “superbomb” cyclone in January 2018. Geophys. Res. Lett., 46, 7718–7725, https://doi.org/10.1029/2019GL082995.

      Hirata, H., R. Kawamura, M. Nonaka, and K. Tsuboki, 2019: Significant impact of heat supply from the Gulf Stream on a “superbomb” cyclone in January 2018. Geophys. Res. Lett., 46, 7718–7725, https://doi.org/10.1029/2019GL082995.)| false
    • Search Google Scholar
    • Export Citation
  • Hogg, A. C., W. K. Dewar, P. Berloff, S. Kravtsov, and D. K. Hutchinson, 2009: The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 4066–4082, https://doi.org/10.1175/2009JCLI2629.1.

      Hogg, A. C., W. K. Dewar, P. Berloff, S. Kravtsov, and D. K. Hutchinson, 2009: The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 4066–4082, https://doi.org/10.1175/2009JCLI2629.1.)| false
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1965a: The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Part I. J. Atmos. Sci., 22, 402–411, https://doi.org/10.1175/1520-0469(1965)022<0402:TIOVBL>2.0.CO;2.

      Holton, J. R., 1965a: The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Part I. J. Atmos. Sci., 22, 402–411, https://doi.org/10.1175/1520-0469(1965)022<0402:TIOVBL>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1965b: The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Part II. J. Atmos. Sci., 22, 535–540, https://doi.org/10.1175/1520-0469(1965)022<0535:TIOVBL>2.0.CO;2.

      Holton, J. R., 1965b: The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Part II. J. Atmos. Sci., 22, 535–540, https://doi.org/10.1175/1520-0469(1965)022<0535:TIOVBL>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

      Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

      Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041–1061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

      Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041–1061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Hotta, D., and H. Nakamura, 2011: On the significance of sensible heat supply from the ocean in the maintenance of mean baroclinicity along storm tracks. J. Climate, 24, 3377–3401, https://doi.org/10.1175/2010JCLI3910.1.

      Hotta, D., and H. Nakamura, 2011: On the significance of sensible heat supply from the ocean in the maintenance of mean baroclinicity along storm tracks. J. Climate, 24, 3377–3401, https://doi.org/10.1175/2010JCLI3910.1.)| false
    • Search Google Scholar
    • Export Citation
  • Huang, J., Y. Zhang, X.-Q. Yang, X. Ren, and H. Hu, 2020: Impacts of North Pacific subtropical and subarctic oceanic frontal zones on the wintertime atmospheric large-scale circulations. J. Climate, 33, 1897–1914, https://doi.org/10.1175/JCLI-D-19-0308.1.

      Huang, J., Y. Zhang, X.-Q. Yang, X. Ren, and H. Hu, 2020: Impacts of North Pacific subtropical and subarctic oceanic frontal zones on the wintertime atmospheric large-scale circulations. J. Climate, 33, 1897–1914, https://doi.org/10.1175/JCLI-D-19-0308.1.)| false
    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2012: On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res., 117, D19110, https://doi.org/10.1029/2012JD017819.

      Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2012: On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res., 117, D19110, https://doi.org/10.1029/2012JD017819.)| false
    • Search Google Scholar
    • Export Citation
  • Infanti, J. M., and B. P. Kirtman, 2019: A comparison of CCSM4 high-resolution and low-resolution predictions for south Florida and southeast United States drought. Climate Dyn., 52, 6877–6892, https://doi.org/10.1007/s00382-018-4553-0.

      Infanti, J. M., and B. P. Kirtman, 2019: A comparison of CCSM4 high-resolution and low-resolution predictions for south Florida and southeast United States drought. Climate Dyn., 52, 6877–6892, https://doi.org/10.1007/s00382-018-4553-0.)| false
    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 2391 pp., https://doi.org/10.1017/9781009157896.

  • Jackson, L. C., and Coauthors, 2020: Impact of ocean resolution and mean state on the rate of AMOC weakening. Climate Dyn., 55, 1711–1732, https://doi.org/10.1007/s00382-020-05345-9.

      Jackson, L. C., and Coauthors, 2020: Impact of ocean resolution and mean state on the rate of AMOC weakening. Climate Dyn., 55, 1711–1732, https://doi.org/10.1007/s00382-020-05345-9.)| false
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and I. M. Held, 2014: Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Modell., 80, 36–48, https://doi.org/10.1016/j.ocemod.2014.06.002.

      Jansen, M. F., and I. M. Held, 2014: Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Modell., 80, 36–48, https://doi.org/10.1016/j.ocemod.2014.06.002.)| false
    • Search Google Scholar
    • Export Citation
  • Jing, Z., and Coauthors, 2020: Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Sci. Adv., 6, eaba7880, https://doi.org/10.1126/sciadv.aba7880.

      Jing, Z., and Coauthors, 2020: Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Sci. Adv., 6, eaba7880, https://doi.org/10.1126/sciadv.aba7880.)| false
    • Search Google Scholar
    • Export Citation
  • Johnson, L., C. M. Lee, and E. A. D’Asaro, 2016: Global estimates of lateral springtime restratification. J. Phys. Oceanogr., 46, 1555–1573, https://doi.org/10.1175/JPO-D-15-0163.1.

      Johnson, L., C. M. Lee, and E. A. D’Asaro, 2016: Global estimates of lateral springtime restratification. J. Phys. Oceanogr., 46, 1555–1573, https://doi.org/10.1175/JPO-D-15-0163.1.)| false
    • Search Google Scholar
    • Export Citation
  • Jones, D. G., and Coauthors, 2015: Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage. Int. J. Greenhouse Gas Control, 40, 350–377, https://doi.org/10.1016/j.ijggc.2015.05.032.

      Jones, D. G., and Coauthors, 2015: Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage. Int. J. Greenhouse Gas Control, 40, 350–377, https://doi.org/10.1016/j.ijggc.2015.05.032.)| false
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., Y.-O. Kwon, H. Seo, and C. C. Ummenhofer, 2019: Meridional Gulf Stream shifts can influence wintertime variability in the North Atlantic storm track and Greenland blocking. Geophys. Res. Lett., 46, 1702–1708, https://doi.org/10.1029/2018GL081087.

      Joyce, T. M., Y.-O. Kwon, H. Seo, and C. C. Ummenhofer, 2019: Meridional Gulf Stream shifts can influence wintertime variability in the North Atlantic storm track and Greenland blocking. Geophys. Res. Lett., 46, 1702–1708, https://doi.org/10.1029/2018GL081087.)| false
    • Search Google Scholar
    • Export Citation
  • Jullien, S., S. Masson, V. Oerder, G. Samson, F. Colas, and L. Renault, 2020: Impact of ocean–atmosphere current feedback on the ocean mesoscale activity: Regional variations, and sensitivity to model resolution. J. Climate, 33, 2585–2602, https://doi.org/10.1175/JCLI-D-19-0484.1.

      Jullien, S., S. Masson, V. Oerder, G. Samson, F. Colas, and L. Renault, 2020: Impact of ocean–atmosphere current feedback on the ocean mesoscale activity: Regional variations, and sensitivity to model resolution. J. Climate, 33, 2585–2602, https://doi.org/10.1175/JCLI-D-19-0484.1.)| false
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and S. Courtney, 1991: A transition in weather over the Agulhas Current. S. Afr. J. Mar. Sci., 10, 159–171, https://doi.org/10.2989/02577619109504629.

      Jury, M. R., and S. Courtney, 1991: A transition in weather over the Agulhas Current. S. Afr. J. Mar. Sci., 10, 159–171, https://doi.org/10.2989/02577619109504629.)| false
    • Search Google Scholar
    • Export Citation
  • Karmalkar, A. V., and R. M. Horton, 2021: Drivers of exceptional coastal warming in the northeastern United States. Nat. Climate Change, 11, 854–860, https://doi.org/10.1038/s41558-021-01159-7.

      Karmalkar, A. V., and R. M. Horton, 2021: Drivers of exceptional coastal warming in the northeastern United States. Nat. Climate Change, 11, 854–860, https://doi.org/10.1038/s41558-021-01159-7.)| false
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 2596–2613, https://doi.org/10.1175/JAS-D-12-082.1.

      Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 2596–2613, https://doi.org/10.1175/JAS-D-12-082.1.)| false
    • Search Google Scholar
    • Export Citation
  • Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nat. Climate Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8.

      Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nat. Climate Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8.)| false
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., S. Dickinson, M. J. McPhaden, and G. C. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 2469–2472, https://doi.org/10.1029/2000GL012610.

      Kelly, K. A., S. Dickinson, M. J. McPhaden, and G. C. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 2469–2472, https://doi.org/10.1029/2000GL012610.)| false
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 5644–5667, https://doi.org/10.1175/2010JCLI3346.1.

      Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 5644–5667, https://doi.org/10.1175/2010JCLI3346.1.)| false
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and Coauthors, 2019: Second report of TPOS 2020. Tech. Rep. GOOS-234, 265 pp., http://tpos2020.org/second-report/.

  • Kilpatrick, T., N. Schneider, and B. Qiu, 2014: Boundary layer convergence induced by strong winds across a midlatitude SST front. J. Climate, 27, 1698–1718, https://doi.org/10.1175/JCLI-D-13-00101.1.

      Kilpatrick, T., N. Schneider, and B. Qiu, 2014: Boundary layer convergence induced by strong winds across a midlatitude SST front. J. Climate, 27, 1698–1718, https://doi.org/10.1175/JCLI-D-13-00101.1.)| false
    • Search Google Scholar
    • Export Citation
  • Kilpatrick, T., N. Schneider, and B. Qiu, 2016: Atmospheric response to a midlatitude SST front: Alongfront winds. J. Atmos. Sci., 73, 3489–3509, https://doi.org/10.1175/JAS-D-15-0312.1.

      Kilpatrick, T., N. Schneider, and B. Qiu, 2016: Atmospheric response to a midlatitude SST front: Alongfront winds. J. Atmos. Sci., 73, 3489–3509, https://doi.org/10.1175/JAS-D-15-0312.1.)| false
    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., 2010: Observations of submesoscale eddies using high-frequency radar-derived kinematic and dynamic quantities. Cont. Shelf Res., 30, 1639–1655, https://doi.org/10.1016/j.csr.2010.06.011.

      Kim, S. Y., 2010: Observations of submesoscale eddies using high-frequency radar-derived kinematic and dynamic quantities. Cont. Shelf Res., 30, 1639–1655, https://doi.org/10.1016/j.csr.2010.06.011.)| false
    • Search Google Scholar
    • Export Citation
  • Kirincich, A., B. Emery, L. Washburn, and P. Flament, 2019: Improving surface current resolution using direction finding algorithms for multiantenna high-frequency radars. J. Atmos. Oceanic Technol., 36, 1997–2014, https://doi.org/10.1175/JTECH-D-19-0029.1.

      Kirincich, A., B. Emery, L. Washburn, and P. Flament, 2019: Improving surface current resolution using direction finding algorithms for multiantenna high-frequency radars. J. Atmos. Oceanic Technol., 36, 1997–2014, https://doi.org/10.1175/JTECH-D-19-0029.1.)| false
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 1303–1328, https://doi.org/10.1007/s00382-012-1500-3.

      Kirtman, B. P., and Coauthors, 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 1303–1328, https://doi.org/10.1007/s00382-012-1500-3.)| false
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V., B. Chapron, and V. Makin, 2014: Impact of wind waves on the air–sea fluxes: A coupled model. J. Geophys. Res. Oceans, 119, 1217–1236, https://doi.org/10.1002/2013JC009412.

      Kudryavtsev, V., B. Chapron, and V. Makin, 2014: Impact of wind waves on the air–sea fluxes: A coupled model. J. Geophys. Res. Oceans, 119, 1217–1236, https://doi.org/10.1002/2013JC009412.)| false
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 2233–2256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

      Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 2233–2256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and S. Minobe, 2017: Storm track response to SST fronts in the northwestern Pacific region in an AGCM. J. Climate, 30, 1081–1102, https://doi.org/10.1175/JCLI-D-16-0331.1.

      Kuwano-Yoshida, A., and S. Minobe, 2017: Storm track response to SST fronts in the northwestern Pacific region in an AGCM. J. Climate, 30, 1081–1102, https://doi.org/10.1175/JCLI-D-16-0331.1.)| false
    • Search Google Scholar
    • Export Citation
  • Kwak, K., H. Song, J. Marshall, H. Seo, and D. McGillicuddy Jr., 2021: Suppressed pCO2 in the Southern Ocean due to the interaction between current and wind. J. Geophys. Res. Oceans, 126, e2021JC017884, https://doi.org/10.1029/2021JC017884.

      Kwak, K., H. Song, J. Marshall, H. Seo, and D. McGillicuddy Jr., 2021: Suppressed pCO2 in the Southern Ocean due to the interaction between current and wind. J. Geophys. Res. Oceans, 126, e2021JC017884, https://doi.org/10.1029/2021JC017884.)| false
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and T. M. Joyce, 2013: Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio-Oyashio Extension variability. J. Climate, 26, 9839–9859, https://doi.org/10.1175/JCLI-D-12-00647.1.

      Kwon, Y.-O., and T. M. Joyce, 2013: Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio-Oyashio Extension variability. J. Climate, 26, 9839–9859, https://doi.org/10.1175/JCLI-D-12-00647.1.)| false
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 3249–3281, https://doi.org/10.1175/2010JCLI3343.1.

      Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 3249–3281, https://doi.org/10.1175/2010JCLI3343.1.)| false
    • Search Google Scholar
    • Export Citation
  • Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018.

      Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018.)| false
    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., G. Lapeyre, R. Plougonven, and P. Klein, 2013: Atmospheric response to sea surface temperature mesoscale structures. J. Geophys. Res. Atmos., 118, 9611–9621, https://doi.org/10.1002/jgrd.50769.

      Lambaerts, J., G. Lapeyre, R. Plougonven, and P. Klein, 2013: Atmospheric response to sea surface temperature mesoscale structures. J. Geophys. Res. Atmos., 118, 9611–9621, https://doi.org/10.1002/jgrd.50769.)| false
    • Search Google Scholar
    • Export Citation
  • Lane, E. M., J. M. Restrepo, and J. C. McWilliams, 2007: Wave–current interaction: A comparison of radiation-stress and vortex-force representations. J. Phys. Oceanogr., 37, 1122–1141, https://doi.org/10.1175/JPO3043.1.

      Lane, E. M., J. M. Restrepo, and J. C. McWilliams, 2007: Wave–current interaction: A comparison of radiation-stress and vortex-force representations. J. Phys. Oceanogr., 37, 1122–1141, https://doi.org/10.1175/JPO3043.1.)| false
    • Search Google Scholar
    • Export Citation
  • Laurindo, L. C., A. J. Mariano, and R. Lumpkin, 2017: An improved surface velocity climatology for the global ocean from drifter observations. Deep-Sea Res., 124, 73–92, https://doi.org/10.1016/j.dsr.2017.04.009.

      Laurindo, L. C., A. J. Mariano, and R. Lumpkin, 2017: An improved surface velocity climatology for the global ocean from drifter observations. Deep-Sea Res., 124, 73–92, https://doi.org/10.1016/j.dsr.2017.04.009.)| false
    • Search Google Scholar
    • Export Citation
  • Laurindo, L. C., L. Siqueira, A. J. Mariano, and B. P. Kirtman, 2019: Cross-spectral analysis of the SST/10-m wind speed coupling resolved by satellite products and climate model simulations. Climate Dyn., 52, 5071–5098, https://doi.org/10.1007/s00382-018-4434-6.

      Laurindo, L. C., L. Siqueira, A. J. Mariano, and B. P. Kirtman, 2019: Cross-spectral analysis of the SST/10-m wind speed coupling resolved by satellite products and climate model simulations. Climate Dyn., 52, 5071–5098, https://doi.org/10.1007/s00382-018-4434-6.)| false
    • Search Google Scholar
    • Export Citation
  • Lee, R. W., T. J. Woollings, B. J. Hoskins, K. D. Williams, C. H. O’Reilly, and G. Masato, 2018: Impact of Gulf Stream SST biases on the global atmospheric circulation. Climate Dyn., 51, 3369–3387, https://doi.org/10.1007/s00382-018-4083-9.

      Lee, R. W., T. J. Woollings, B. J. Hoskins, K. D. Williams, C. H. O’Reilly, and G. Masato, 2018: Impact of Gulf Stream SST biases on the global atmospheric circulation. Climate Dyn., 51, 3369–3387, https://doi.org/10.1007/s00382-018-4083-9.)| false
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391–427, https://doi.org/10.1146/annurev.fl.15.010183.002135.

      Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391–427, https://doi.org/10.1146/annurev.fl.15.010183.002135.)| false
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., P. B. Krummel, and S. T. Siems, 1999: Measuring entrainment, divergence, and vorticity on the mesoscale from aircraft. J. Atmos. Oceanic Technol., 16, 1384–1400, https://doi.org/10.1175/1520-0426(1999)016<1384:MEDAVO>2.0.CO;2.

      Lenschow, D. H., P. B. Krummel, and S. T. Siems, 1999: Measuring entrainment, divergence, and vorticity on the mesoscale from aircraft. J. Atmos. Oceanic Technol., 16, 1384–1400, https://doi.org/10.1175/1520-0426(1999)016<1384:MEDAVO>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Lévy, M., 2008: The modulation of biological production by oceanic mesoscale turbulence. Transport and Mixing in Geophysical Flows, J. Weiss and A. Provenzale, Eds., Springer, 219–261.

  • Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

      Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.)| false
    • Search Google Scholar
    • Export Citation
  • Li, F., H. Sang, and Z. Jing, 2017: Quantify the continuous dependence of SST–turbulent heat flux relationship on spatial scales. Geophys. Res. Lett., 44, 6326–6333, https://doi.org/10.1002/2017GL073695.

      Li, F., H. Sang, and Z. Jing, 2017: Quantify the continuous dependence of SST–turbulent heat flux relationship on spatial scales. Geophys. Res. Lett., 44, 6326–6333, https://doi.org/10.1002/2017GL073695.)| false
    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. J. Atmos. Sci., 69, 2983–2994, https://doi.org/10.1175/JAS-D-11-0245.1.

      Li, Y., and R. E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. J. Atmos. Sci., 69, 2983–2994, https://doi.org/10.1175/JAS-D-11-0245.1.)| false
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648–1654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

      Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648–1654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

      Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Liu, W., A. V. Fedorov, S.-P. Xie, and S. Hu, 2020: Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876.

      Liu, W., A. V. Fedorov, S.-P. Xie, and S. Hu, 2020: Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876.)| false
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2021: Ocean fronts and eddies force atmospheric rivers and heavy precipitation in western North America. Nat. Commun., 12, 1268, https://doi.org/10.1038/s41467-021-21504-w.

      Liu, X., and Coauthors, 2021: Ocean fronts and eddies force atmospheric rivers and heavy precipitation in western North America. Nat. Commun., 12, 1268, https://doi.org/10.1038/s41467-021-21504-w.)| false
    • Search Google Scholar
    • Export Citation
  • López-Dekker, P., H. Rott, P. Prats-Iraola, B. Chapron, K. Scipal, and E. De Witte, 2019: Harmony: An Earth Explorer 10 mission candidate to observe land, ice, and ocean surface dynamics. IGARSS 2019–2019 IEEE Int. Geoscience and Remote Sensing Symp., Yokohama, Japan, Institute of Electrical and Electronics Engineers, 8381–8384, https://doi.org/10.1109/IGARSS.2019.8897983.

  • Lorenz, E., 1960: Generation of available potential energy and the intensity of the general circulation. Dynamics of Climate, R. L. Pfeffer, Ed., Pergamon Press, 86–92.

  • Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 2344–2360, https://doi.org/10.1175/JCLI3404.1.

      Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 2344–2360, https://doi.org/10.1175/JCLI3404.1.)| false
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, R. M. J.-S. Hseih, D. Wu, X. Lin, L. Wu, and Z. Jing, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.

      Ma, X., P. Chang, R. Saravanan, R. M. J.-S. Hseih, D. Wu, X. Lin, L. Wu, and Z. Jing, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.)| false
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533–537, https://doi.org/10.1038/nature18640.

      Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533–537, https://doi.org/10.1038/nature18640.)| false
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. Wu, X. Lin, and L. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 1861–1880, https://doi.org/10.1175/JCLI-D-16-0154.1.

      Ma, X., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. Wu, X. Lin, and L. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 1861–1880, https://doi.org/10.1175/JCLI-D-16-0154.1.)| false
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, and E. Moore, 2004: Flow adjustments across sea-surface temperature changes. Bound.-Layer Meteor., 111, 553–564, https://doi.org/10.1023/B:BOUN.0000016600.63382.5f.

      Mahrt, L., D. Vickers, and E. Moore, 2004: Flow adjustments across sea-surface temperature changes. Bound.-Layer Meteor., 111, 553–564, https://doi.org/10.1023/B:BOUN.0000016600.63382.5f.)| false
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2009: The CLIMODE field campaign: Observing the cycle of convection and restratification over the Gulf Stream. Bull. Amer. Meteor. Soc., 90, 1337–1350, https://doi.org/10.1175/2009BAMS2706.1.

      Marshall, J., and Coauthors, 2009: The CLIMODE field campaign: Observing the cycle of convection and restratification over the Gulf Stream. Bull. Amer. Meteor. Soc., 90, 1337–1350, https://doi.org/10.1175/2009BAMS2706.1.)| false
    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2014: The Ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 2287–2299, https://doi.org/10.1007/s00382-014-2308-0.

      Marshall, J., J. R. Scott, K. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2014: The Ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 2287–2299, https://doi.org/10.1007/s00382-014-2308-0.)| false
    • Search Google Scholar
    • Export Citation
  • Masunaga, R., and N. Schneider, 2022: Surface wind responses to mesoscale sea surface temperature over western boundary current regions assessed by spectral transfer functions. J. Atmos. Sci., 79, 1549–1573, https://doi.org/10.1175/JAS-D-21-0125.1.

      Masunaga, R., and N. Schneider, 2022: Surface wind responses to mesoscale sea surface temperature over western boundary current regions assessed by spectral transfer functions. J. Atmos. Sci., 79, 1549–1573, https://doi.org/10.1175/JAS-D-21-0125.1.)| false
    • Search Google Scholar
    • Export Citation
  • Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020a: Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Kuroshio Extension in winter. J. Climate, 33, 3–25, https://doi.org/10.1175/JCLI-D-19-0097.1.

      Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020a: Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Kuroshio Extension in winter. J. Climate, 33, 3–25, https://doi.org/10.1175/JCLI-D-19-0097.1.)| false
    • Search Google Scholar
    • Export Citation
  • Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020b: Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Gulf Stream and Agulhas Return Current in winter. J. Climate, 33, 9083–9101, https://doi.org/10.1175/JCLI-D-19-0948.1.

      Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020b: Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Gulf Stream and Agulhas Return Current in winter. J. Climate, 33, 9083–9101, https://doi.org/10.1175/JCLI-D-19-0948.1.)| false
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., Jr. , 2016: Mechanisms of physical–biological–biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci., 8, 125–159, https://doi.org/10.1146/annurev-marine-010814-015606.

      McGillicuddy, D. J., Jr. , 2016: Mechanisms of physical–biological–biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci., 8, 125–159, https://doi.org/10.1146/annurev-marine-010814-015606.)| false
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and Coauthors, 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256.

      McGillicuddy, D. J., and Coauthors, 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256.)| false
    • Search Google Scholar
    • Export Citation
  • McGillis, W. R., J. B. Edson, J. E. Hare, and C. W. Fairall, 2001: Direct covariance air–sea CO2 fluxes. J. Geophys. Res., 106, 16 729–16 745, https://doi.org/10.1029/2000JC000506.

      McGillis, W. R., J. B. Edson, J. E. Hare, and C. W. Fairall, 2001: Direct covariance air–sea CO2 fluxes. J. Geophys. Res., 106, 16 729–16 745, https://doi.org/10.1029/2000JC000506.)| false
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. Jonsson, and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 1850–1868, https://doi.org/10.1175/2010JCLI3958.1.

      McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. Jonsson, and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 1850–1868, https://doi.org/10.1175/2010JCLI3958.1.)| false
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

      McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.)| false
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and B. Fox-Kemper, 2013: Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech., 730, 464–490, https://doi.org/10.1017/jfm.2013.348.

      McWilliams, J. C., and B. Fox-Kemper, 2013: Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech., 730, 464–490, https://doi.org/10.1017/jfm.2013.348.)| false
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 1793–1816, https://doi.org/10.1175/JPO-D-12-07.1.

      McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 1793–1816, https://doi.org/10.1175/JPO-D-12-07.1.)| false
    • Search Google Scholar
    • Export Citation
  • Meinig, C., and Coauthors, 2019: Public–private partnerships to advance regional ocean-observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci., 6, 448, https://doi.org/10.3389/fmars.2019.00448.

      Meinig, C., and Coauthors, 2019: Public–private partnerships to advance regional ocean-observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci., 6, 448, https://doi.org/10.3389/fmars.2019.00448.)| false
    • Search Google Scholar
    • Export Citation
  • Mémin, E., 2014: Fluid flow dynamics under location uncertainty. Geophys. Astrophys. Fluid Dyn., 108, 119–146, https://doi.org/10.1080/03091929.2013.836190.

      Mémin, E., 2014: Fluid flow dynamics under location uncertainty. Geophys. Astrophys. Fluid Dyn., 108, 119–146, https://doi.org/10.1080/03091929.2013.836190.)| false
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., and Coauthors, 2018: Preindustrial control simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model. Earth Syst., 10, 3049–3075, https://doi.org/10.1029/2018MS001495.

      Menary, M. B., and Coauthors, 2018: Preindustrial control simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model. Earth Syst., 10, 3049–3075, https://doi.org/10.1029/2018MS001495.)| false
    • Search Google Scholar
    • Export Citation
  • Messager, C., and S. Swart, 2016: Significant atmospheric boundary layer change observed above an Agulhas current warm core eddy. Adv. Meteor., 2016, 3659657, https://doi.org/10.1155/2016/3659657.

      Messager, C., and S. Swart, 2016: Significant atmospheric boundary layer change observed above an Agulhas current warm core eddy. Adv. Meteor., 2016, 3659657, https://doi.org/10.1155/2016/3659657.)| false
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206–209, https://doi.org/10.1038/nature06690.

      Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206–209, https://doi.org/10.1038/nature06690.)| false
    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 3699–3719, https://doi.org/10.1175/2010JCLI3359.1.

      Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 3699–3719, https://doi.org/10.1175/2010JCLI3359.1.)| false
    • Search Google Scholar
    • Export Citation
  • Miyamoto, A., H. Nakamura, and T. Miyasaka, 2018: Influence of the subtropical high and storm track on low-cloud fraction and its seasonality over the south Indian Ocean. J. Climate, 31, 4017–4039, https://doi.org/10.1175/JCLI-D-17-0229.1.

      Miyamoto, A., H. Nakamura, and T. Miyasaka, 2018: Influence of the subtropical high and storm track on low-cloud fraction and its seasonality over the south Indian Ocean. J. Climate, 31, 4017–4039, https://doi.org/10.1175/JCLI-D-17-0229.1.)| false
    • Search Google Scholar
    • Export Citation
  • Miyamoto, A., H. Nakamura, T. Miyasaka, Y. Kosaka, B. Taguchi, and K. Nishii, 2022: Wintertime weakening of low-cloud impacts on the subtropical high in the south Indian Ocean. J. Climate, 35, 323–334, https://doi.org/10.1175/JCLI-D-21-0178.1.

      Miyamoto, A., H. Nakamura, T. Miyasaka, Y. Kosaka, B. Taguchi, and K. Nishii, 2022: Wintertime weakening of low-cloud impacts on the subtropical high in the south Indian Ocean. J. Climate, 35, 323–334, https://doi.org/10.1175/JCLI-D-21-0178.1.)| false
    • Search Google Scholar
    • Export Citation
  • Miyazawa, Y., X. Guo, S. M. Varlamov, T. Miyama, K. Yoda, K. Sato, T. Kano, and K. Sato, 2016: Assimilation of the seabird and ship drift data in the north-eastern Sea of Japan into an operational ocean nowcast/forecast system. Sci. Rep., 5, 17672, https://doi.org/10.1038/srep17672.

      Miyazawa, Y., X. Guo, S. M. Varlamov, T. Miyama, K. Yoda, K. Sato, T. Kano, and K. Sato, 2016: Assimilation of the seabird and ship drift data in the north-eastern Sea of Japan into an operational ocean nowcast/forecast system. Sci. Rep., 5, 17672, https://doi.org/10.1038/srep17672.)| false
    • Search Google Scholar
    • Export Citation
  • Miyazawa, Y., and Coauthors, 2019: Temperature profiling measurements by sea turtles improve ocean state estimation in the Kuroshio–Oyashio confluence region. Ocean Dyn., 69, 267–282, https://doi.org/10.1007/s10236-018-1238-5.

      Miyazawa, Y., and Coauthors, 2019: Temperature profiling measurements by sea turtles improve ocean state estimation in the Kuroshio–Oyashio confluence region. Ocean Dyn., 69, 267–282, https://doi.org/10.1007/s10236-018-1238-5.)| false
    • Search Google Scholar
    • Export Citation
  • Moreno-Chamarro, E., L.-P. Caron, P. Ortega, S. Loosveldt Tomas, and M. J. Roberts, 2021: Can we trust CMIP5/6 future projections of European winter precipitation? Environ. Res. Lett., 16, 054063, https://doi.org/10.1088/1748-9326/abf28a.

      Moreno-Chamarro, E., L.-P. Caron, P. Ortega, S. Loosveldt Tomas, and M. J. Roberts, 2021: Can we trust CMIP5/6 future projections of European winter precipitation? Environ. Res. Lett., 16, 054063, https://doi.org/10.1088/1748-9326/abf28a.)| false
    • Search Google Scholar
    • Export Citation
  • Moreton, S., D. Ferreira, M. Roberts, and H. Hewitt, 2021: Air–sea turbulent heat flux feedback over mesoscale eddies. Geophys. Res. Lett., 48, e2021GL095407, https://doi.org/10.1029/2021GL095407.

      Moreton, S., D. Ferreira, M. Roberts, and H. Hewitt, 2021: Air–sea turbulent heat flux feedback over mesoscale eddies. Geophys. Res. Lett., 48, e2021GL095407, https://doi.org/10.1029/2021GL095407.)| false
    • Search Google Scholar
    • Export Citation
  • Nadiga, B. T., 2008: Orientation of eddy fluxes in geostrophic turbulence. Philos. Trans. Roy. Soc., A366, 2489–2508, https://doi.org/10.1098/rsta.2008.0058.

      Nadiga, B. T., 2008: Orientation of eddy fluxes in geostrophic turbulence. Philos. Trans. Roy. Soc., A366, 2489–2508, https://doi.org/10.1098/rsta.2008.0058.)| false
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and J. M. Wallace, 1990: Observed changes in baroclinic wave activity during the life cycles of low-frequency circulation anomalies. J. Atmos. Sci., 47, 1100–1116, https://doi.org/10.1175/1520-0469(1990)047<1100:OCIBWA>2.0.CO;2.

      Nakamura, H., and J. M. Wallace, 1990: Observed changes in baroclinic wave activity during the life cycles of low-frequency circulation anomalies. J. Atmos. Sci., 47, 1100–1116, https://doi.org/10.1175/1520-0469(1990)047<1100:OCIBWA>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 1828–1844, https://doi.org/10.1175/1520-0442(2004)017<1828:SVITSH>2.0.CO;2.

      Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 1828–1844, https://doi.org/10.1175/1520-0442(2004)017<1828:SVITSH>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–346, https://doi.org/10.1029/147GM18.

  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.

      Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.)| false
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., A. Nishina, and S. Minobe, 2012: Response of storm tracks to bimodal Kuroshio path states south of Japan. J. Climate, 25, 7772–7779, https://doi.org/10.1175/JCLI-D-12-00326.1.

      Nakamura, H., A. Nishina, and S. Minobe, 2012: Response of storm tracks to bimodal Kuroshio path states south of Japan. J. Climate, 25, 7772–7779, https://doi.org/10.1175/JCLI-D-12-00326.1.)| false
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., A. Isobe, S. Minobe, H. Mitsudera, and M. Nonaka, 2015: “Hot spots” in the climate system—New developments in the extratropical ocean–atmosphere interaction research: A short review and an introduction. J. Oceanogr., 71, 463–467, https://doi.org/10.1007/s10872-015-0321-5.

      Nakamura, H., A. Isobe, S. Minobe, H. Mitsudera, and M. Nonaka, 2015: “Hot spots” in the climate system—New developments in the extratropical ocean–atmosphere interaction research: A short review and an introduction. J. Oceanogr., 71, 463–467, https://doi.org/10.1007/s10872-015-0321-5.)| false
    • Search Google Scholar
    • Export Citation
  • Nakayama, M., H. Nakamura, and F. Ogawa, 2021: Impacts of a midlatitude oceanic frontal zone for the baroclinic annular mode in the Southern Hemisphere. J. Climate, 34, 7389–7408, https://doi.org/10.1175/JCLI-D-20-0359.1.

      Nakayama, M., H. Nakamura, and F. Ogawa, 2021: Impacts of a midlatitude oceanic frontal zone for the baroclinic annular mode in the Southern Hemisphere. J. Climate, 34, 7389–7408, https://doi.org/10.1175/JCLI-D-20-0359.1.)| false
    • Search Google Scholar
    • Export Citation
  • Newman, L., and Coauthors, 2022: The Southern Ocean Observing System 2021–2025 science and implementation plan. Zenodo, 55 pp., https://doi.org/10.5281/zenodo.6324359.

  • Nkwinkwa Njouodo, A. S., S. Koseki, N. Keenlyside, and M. Rouault, 2018: Atmospheric signature of the Agulhas Current. Geophys. Res. Lett., 45, 5185–5193, https://doi.org/10.1029/2018GL077042.

      Nkwinkwa Njouodo, A. S., S. Koseki, N. Keenlyside, and M. Rouault, 2018: Atmospheric signature of the Agulhas Current. Geophys. Res. Lett., 45, 5185–5193, https://doi.org/10.1029/2018GL077042.)| false
    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Yoshida-Kuwano, and K. Takaya, 2009: Air–sea heat exchanges characteristic to a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate, 22, 6515–6535, https://doi.org/10.1175/2009JCLI2960.1.

      Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Yoshida-Kuwano, and K. Takaya, 2009: Air–sea heat exchanges characteristic to a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate, 22, 6515–6535, https://doi.org/10.1175/2009JCLI2960.1.)| false
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., N.-E. Omrani, K. Nishii, H. Nakamura, and N. Keenlyside, 2015: Ozone-induced climate change propped up by the Southern Hemisphere oceanic front. Geophys. Res. Lett., 42, 10 056–10 063, https://doi.org/10.1002/2015GL066538.

      Ogawa, F., N.-E. Omrani, K. Nishii, H. Nakamura, and N. Keenlyside, 2015: Ozone-induced climate change propped up by the Southern Hemisphere oceanic front. Geophys. Res. Lett., 42, 10 056–10 063, https://doi.org/10.1002/2015GL066538.)| false
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2016: Importance of midlatitude oceanic frontal zones for the annular mode variability: Interbasin differences in the southern annular mode signature. J. Climate, 29, 6179–6199, https://doi.org/10.1175/JCLI-D-15-0885.1.

      Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2016: Importance of midlatitude oceanic frontal zones for the annular mode variability: Interbasin differences in the southern annular mode signature. J. Climate, 29, 6179–6199, https://doi.org/10.1175/JCLI-D-15-0885.1.)| false
    • Search Google Scholar
    • Export Citation
  • Olivier, L., and Coauthors, 2022: Impact of North Brazil current rings on air–sea CO2 flux variability in winter 2020. Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022.

      Olivier, L., and Coauthors, 2022: Impact of North Brazil current rings on air–sea CO2 flux variability in winter 2020. Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022.)| false
    • Search Google Scholar
    • Export Citation
  • Omand, M. M., E. A. D’Asaro, C. M. Lee, M. J. Perry, N. Briggs, I. Cetinić, and A. Mahadevan, 2015: Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science, 348, 222–225, https://doi.org/10.1126/science.1260062.

      Omand, M. M., E. A. D’Asaro, C. M. Lee, M. J. Perry, N. Briggs, I. Cetinić, and A. Mahadevan, 2015: Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science, 348, 222–225, https://doi.org/10.1126/science.1260062.)| false
    • Search Google Scholar
    • Export Citation
  • Omrani, N.-E., F. Ogawa, H. Nakamura, N. Keenlyside, S. W. Lubis, and K. Matthes, 2019: Key role of the ocean western boundary currents in shaping the Northern Hemisphere climate. Sci. Rep., 9, 3014, https://doi.org/10.1038/s41598-019-39392-y.

      Omrani, N.-E., F. Ogawa, H. Nakamura, N. Keenlyside, S. W. Lubis, and K. Matthes, 2019: Key role of the ocean western boundary currents in shaping the Northern Hemisphere climate. Sci. Rep., 9, 3014, https://doi.org/10.1038/s41598-019-39392-y.)| false
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., 2012: Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellites. J. Climate, 25, 1544–1569, https://doi.org/10.1175/JCLI-D-11-00121.1.

      O’Neill, L. W., 2012: Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellites. J. Climate, 25, 1544–1569, https://doi.org/10.1175/JCLI-D-11-00121.1.)| false
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 2340–2354, https://doi.org/10.1175/2780.1.

      O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 2340–2354, https://doi.org/10.1175/2780.1.)| false
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 5916–5942, https://doi.org/10.1175/JCLI-D-11-00230.1.

      O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 5916–5942, https://doi.org/10.1175/JCLI-D-11-00230.1.)| false
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., T. Haack, and T. Durland, 2015: Estimation of time-averaged surface divergence and vorticity from satellite ocean vector winds. J. Climate, 28, 7596–7620, https://doi.org/10.1175/JCLI-D-15-0119.1.

      O’Neill, L. W., T. Haack, and T. Durland, 2015: Estimation of time-averaged surface divergence and vorticity from satellite ocean vector winds. J. Climate, 28, 7596–7620, https://doi.org/10.1175/JCLI-D-15-0119.1.)| false
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2017: The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci., 74, 2383–2412, https://doi.org/10.1175/JAS-D-16-0213.1.

      O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2017: The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci., 74, 2383–2412, https://doi.org/10.1175/JAS-D-16-0213.1.)| false
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 52–66, https://doi.org/10.1002/qj.2334.

      O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 52–66, https://doi.org/10.1002/qj.2334.)| false
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., S. Minobe, and A. Kuwano-Yoshida, 2016: The influence of the Gulf Stream on wintertime European blocking. Climate Dyn., 47, 1545–1567, https://doi.org/10.1007/s00382-015-2919-0.

      O’Reilly, C. H., S. Minobe, and A. Kuwano-Yoshida, 2016: The influence of the Gulf Stream on wintertime European blocking. Climate Dyn., 47, 1545–1567, https://doi.org/10.1007/s00382-015-2919-0.)| false
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., S. Minobe, A. Kuwano-Yoshida, and T. Woollings, 2017: The Gulf Stream influence on wintertime North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 143, 173–183, https://doi.org/10.1002/qj.2907.

      O’Reilly, C. H., S. Minobe, A. Kuwano-Yoshida, and T. Woollings, 2017: The Gulf Stream influence on wintertime North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 143, 173–183, https://doi.org/10.1002/qj.2907.)| false
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833–838, https://doi.org/10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.

      Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833–838, https://doi.org/10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115–136, https://doi.org/10.1146/annurev-marine-121211-172315.

      Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115–136, https://doi.org/10.1146/annurev-marine-121211-172315.)| false
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Z. Sun, 1985: A modeling and observational study of the relationship between sea-surface temperature in the Northwest Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc., 111, 947–975, https://doi.org/10.1002/qj.49711147003.

      Palmer, T. N., and Z. Sun, 1985: A modeling and observational study of the relationship between sea-surface temperature in the Northwest Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc., 111, 947–975, https://doi.org/10.1002/qj.49711147003.)| false
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., and A. Czaja, 2016: On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quart. J. Roy. Meteor. Soc., 142, 1554–1561, https://doi.org/10.1002/qj.2689.

      Parfitt, R., and A. Czaja, 2016: On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quart. J. Roy. Meteor. Soc., 142, 1554–1561, https://doi.org/10.1002/qj.2689.)| false
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., and H. Seo, 2018: A new framework for near-surface wind convergence over the Kuroshio Extension and Gulf Stream in wintertime: The role of atmospheric fronts. Geophys. Res. Lett., 45, 9909–9918, https://doi.org/10.1029/2018GL080135.

      Parfitt, R., and H. Seo, 2018: A new framework for near-surface wind convergence over the Kuroshio Extension and Gulf Stream in wintertime: The role of atmospheric fronts. Geophys. Res. Lett., 45, 9909–9918, https://doi.org/10.1029/2018GL080135.)| false
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., A. Czaja, S. Minobe, and A. Kuwano-Yoshida, 2016: The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett., 43, 2299–2306, https://doi.org/10.1002/2016GL067723.

      Parfitt, R., A. Czaja, S. Minobe, and A. Kuwano-Yoshida, 2016: The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett., 43, 2299–2306, https://doi.org/10.1002/2016GL067723.)| false
    • Search Google Scholar
    • Export Citation
  • Peng, S., A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971–987, https://doi.org/10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.

      Peng, S., A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971–987, https://doi.org/10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.)| false
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., and T. Hamill, 2017: Coupled data assimilation for integrated Earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169–ES172, https://www.jstor.org/stable/26243775.

      Penny, S. G., and T. Hamill, 2017: Coupled data assimilation for integrated Earth system analysis and prediction.