Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 2963–2978, https://doi.org/10.1175/1520-0442(1997)010<2963:SFVOTN>2.0.CO;2.
Alexander, M. A., S. Shin, J. D. Scott, E. Curchitser, and C. Stock, 2020: The response of the northwest Atlantic Ocean to climate change. J. Climate, 33, 405–428, https://doi.org/10.1175/JCLI-D-19-0117.1.
Ardhuin, F., S. T. Gille, D. Menemenlis, C. B. Rocha, N. Rascle, B. Chapron, J. Gula, and J. Molemaker, 2017: Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. Oceans, 122, 4500–4517, https://doi.org/10.1002/2016JC012413.
Ardhuin, F., and Coauthors, 2019: Observing sea states. Front. Mar. Sci., 6, 124, https://doi.org/10.3389/fmars.2019.00124.
Ayet, A., and B. Chapron, 2022: The dynamical coupling of wind-waves and atmospheric turbulence: A review of theoretical and phenomenological models. Bound.-Layer Meteor., 183 (1), 1–33, https://doi.org/10.1007/s10546-021-00666-6.
Ayet, A., N. Rascle, B. Chapron, F. Couvreux, and L. Terray, 2021: Uncovering air–sea interaction in oceanic submesoscale frontal regions using high-resolution satellite observations. U.S. CLIVAR Variations, Vol. 19, U.S CLIVAR Project Office, Washington, DC, 10–17, https://usclivar.org/newsletters.
Bachman, S. D., J. R. Taylor, K. A. Adams, and P. J. Hosegood, 2017: Mesoscale and submesoscale effects on mixed layer depth in the southern ocean. J. Phys. Oceanogr., 47, 2173–2188, https://doi.org/10.1175/JPO-D-17-0034.1.
Bachman, S. D., B. Fox-Kemper, and F. O. Bryan, 2020: A diagnosis of anisotropic eddy diffusion from a high-resolution global ocean model. J. Adv. Model. Earth Syst., 12, e2019MS001904, https://doi.org/10.1029/2019MS001904.
Battisti, D. S., E. S. Sarachik, and A. C. Hirst, 1999: A consistent model for the large-scale steady surface atmospheric circulation in the tropics. J. Climate, 12, 2956–2964, https://doi.org/10.1175/1520-0442(1999)012<2956:ACMFTL>2.0.CO;2.
Beal, R. C., V. N. Kudryavtsev, D. R. Thompson, S. A. Grodsky, D. G. Tilley, V. A. Dulov, and H. C. Graber, 1997: The influence of the marine atmospheric boundary layer on ERS 1 synthetic aperture radar imagery of the Gulf Stream. J. Geophys. Res., 102, 5799–5814, https://doi.org/10.1029/96JC03109.
Bellucci, A., and Coauthors, 2021: Air–sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations. Climate Dyn., 56, 2093–2111, https://doi.org/10.1007/s00382-020-05573-z.
Belmonte Rivas, M., and A. Stoffelen, 2019: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019.
Bigorre, S. P., R. A. Weller, J. B. Edson, and J. D. Ware, 2013: A surface mooring for air– sea interaction research in the Gulf Stream. Part II: Analysis of the observations and their accuracies. J. Atmos. Oceanic Technol., 30, 450–469, https://doi.org/10.1175/JTECH-D-12-00078.1.
Bilgen, S. I., and B. P. Kirtman, 2020: Impact of ocean model resolution on understanding the delayed warming of the Southern Ocean. Environ. Res. Lett., 15, 114012, https://doi.org/10.1088/1748-9326/abbc3e.
Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 8207–8221, https://doi.org/10.1175/JCLI-D-17-0159.1.
Bishop, S. P., R. J. Small, and F. O. Bryan, 2020: The global sink of available potential energy by mesoscale air–sea interaction. J. Adv. Model. Earth Syst., 12, e2020MS002118, https://doi.org/10.1029/2020MS002118.
Bladé, I., 1997: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10, 2087–2106, https://doi.org/10.1175/1520-0442(1997)010<2087:TIOMOA>2.0.CO;2.
Bony, S., and Coauthors, 2017: EUREC4A: A field campaign to elucidate the couplings between clouds, convection and circulation. Surv. Geophys., 38, 1529–1568, https://doi.org/10.1007/s10712-017-9428-0.
Booth, J. F., L. A. Thompson, J. Patoux, K. A. Kelly, and S. Dickinson, 2010: The signature of midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 1160–1174, https://doi.org/10.1175/2009JCLI3064.1.
Booth, J. F., L. A. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 1241–1256, https://doi.org/10.1175/MWR-D-11-00195.1.
Booth, J. F., Y.-O. Kwon, S. Ko, R. J. Small, and R. Msadek, 2017: Spatial patterns and intensity of the surface storm tracks in CMIP5 models. J. Climate, 30, 4965–4981, https://doi.org/10.1175/JCLI-D-16-0228.1.
Bourassa, M. A., and Coauthors, 2013: High-latitude ocean and sea ice surface fluxes: Requirements and challenges for climate research. Bull. Amer. Meteor. Soc., 94, 403–423, https://doi.org/10.1175/BAMS-D-11-00244.1.
Bourassa, M. A., E. Rodríguez, and D. Chelton, 2016: Winds and Currents Mission: Ability to observe mesoscale AIR/SEA coupling. 2016 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Beijing, China, Institute of Electrical and Electronics Engineers, 7392–7395, https://doi.org/10.1109/IGARSS.2016.7730928.
Bourassa, M. A., and Coauthors, 2019: Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Front. Mar. Sci., 6, 443, https://doi.org/10.3389/fmars.2019.00443.
Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 1847–1853, https://doi.org/10.1175/JCLI-D-11-00329.1.
Brankart, J.-M., 2013: Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling. Ocean Modell., 66, 64–76, https://doi.org/10.1016/j.ocemod.2013.02.004.
Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 6277–6291, https://doi.org/10.1175/2010JCLI3665.1.
Bye, J. A. T., 1986: Momentum exchange at the sea surface by wind stress and understress. Quart. J. Roy. Meteor. Soc., 112, 501–510, https://doi.org/10.1002/qj.49711247212.
Byrne, D., L. Papritz, I. Frenger, M. Münnich, and N. Gruber, 2015: Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J. Atmos. Sci., 72, 1872–1890, https://doi.org/10.1175/JAS-D-14-0195.1.
Cabrera, M., M. Santini, L. Lima, J. Carvalho, E. Rosa, C. Rodrigues, and L. Pezzi, 2022: The southwestern Atlantic Ocean mesoscale eddies: A review of their role in the air–sea interaction processes. J. Mar. Syst., 235, 103785, https://doi.org/10.1016/j.jmarsys.2022.103785.
Cavaleri, L., B. Fox-Kemper, and M. Hemer, 2012: Wind waves in the coupled climate system. Bull. Amer. Meteor. Soc., 93, 1651–1661, https://doi.org/10.1175/BAMS-D-11-00170.1.
Centurioni, L. R., and Coauthors, 2019: Global in situ observations of essential climate and ocean variables at the air–sea interface. Front. Mar. Sci., 6, 419, https://doi.org/10.3389/fmars.2019.00419.
Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 2038–2053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.
Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 999–1015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.
Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.
Chang, P., and Coauthors, 2020: An unprecedented set of high-resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst., 12, e2020MS002298, https://doi.org/10.1029/2020MS002298.
Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci., 4, 136–162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.
Charrassin, J.-B., and Coauthors, 2008: Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc. Natl. Acad. Sci. USA, 105, 11 634–11 639, https://doi.org/10.1073/pnas.0800790105.
Chelton, D. B., 2005: The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J. Climate, 18, 530–550, https://doi.org/10.1175/JCLI-3275.1.
Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 1479–1498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.
Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978–983, https://doi.org/10.1126/science.1091901.
Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495–517, https://doi.org/10.1175/JPO3025.1.
Chelton, D. B., P. Gaube, M. G. Schlax, J. J. Early, and R. M. Samelson, 2011a: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334, 328–332, https://doi.org/10.1126/science.1208897.
Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011b: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002.
Clayson, C. A., J. B. Edson, A. Paget, R. Graham, and B. Greenwood, 2019: The effects of rainfall on the atmosphere and the ocean during SPURS-2. Oceanography, 32, 86–97, https://doi.org/10.5670/oceanog.2019.216.
Cravatte, S., and Coauthors, 2016: First report of TPOS 2020. Tech. Rep. GOOS-215, 200 pp., http://tpos2020.org/first-report/.
Cronin, M. F., S. Legg, and P. Zuidema, 2009: Climate research: Best practices for process studies. Bull. Amer. Meteor. Soc., 90, 917–918, https://doi.org/10.1175/2009BAMS2622.1.
Cronin, M. F., and Coauthors, 2019: Air–sea fluxes with a focus on heat and momentum. Front. Mar. Sci., 6, 430, https://doi.org/10.3389/fmars.2019.00430.
Cronin, M. F., and Coauthors, 2022: Developing an Observing Air–Sea Interactions Strategy (OASIS) for the global ocean. ICES J. Mar. Sci., 2022, fsac149, https://doi.org/10.1093/icesjms/fsac149.
Czaja, A., and N. Blunt, 2011: A new mechanism for ocean–atmosphere coupling in midlatitudes. Quart. J. Roy. Meteor. Soc., 137, 1095–1101, https://doi.org/10.1002/qj.814.
Czaja, A., C. Frankignoul, S. Minobe, and B. Vannière, 2019: Simulating the midlatitude atmospheric circulation: What might we gain from high-resolution modeling of air–sea interactions? Curr. Climate Change Rep., 5, 390–406, https://doi.org/10.1007/s40641-019-00148-5.
D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101–115, https://doi.org/10.1146/annurev-marine-010213-135138.
D’Asaro, E. A., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318–322, https://doi.org/10.1126/science.1201515.
D’Asaro, E. A., and Coauthors, 2018: Ocean convergence and dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 1162–1167, https://doi.org/10.1073/pnas.1718453115.
de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.
Deike, L., and W. K. Melville, 2018: Gas transfer by breaking waves. Geophys. Res. Lett., 45, 10 482–10 492, https://doi.org/10.1029/2018GL078758.
de Kloe, J., A. Stoffelen, and A. Verhoef, 2017: Improved use of scatterometer measurements by using stress-equivalent reference winds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 2340–2347, https://doi.org/10.1109/JSTARS.2017.2685242.
Deser, C., S. Wahl, and J. J. Bates, 1993: The influence of sea surface temperature gradients on stratiform cloudiness along the equatorial front in the Pacific Ocean. J. Climate, 6, 1172–1180, https://doi.org/10.1175/1520-0442(1993)006<1172:TIOSST>2.0.CO;2.
Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 4751–4767, https://doi.org/10.1175/JCLI4278.1.
Deskos, G., J. C. Y. Lee, C. Draxl, and M. A. Sprague, 2021: Review of wind-wave coupling models for large-eddy simulation of the marine atmospheric boundary layer. J. Atmos. Sci., 78, 3025–3045, https://doi.org/10.1175/JAS-D-21-0003.1.
de Szoeke, S. P., and C. S. Bretherton, 2004: Quasi-Lagrangian large eddy simulations of cross-equatorial flow in the east Pacific atmospheric boundary layer. J. Atmos. Sci., 61, 1837–1858, https://doi.org/10.1175/1520-0469(2004)061<1837:QLESOC>2.0.CO;2.
de Szoeke, S. P., and E. D. Maloney, 2020: Atmospheric mixed layer convergence from observed MJO sea surface temperature anomalies. J. Climate, 33, 547–558, https://doi.org/10.1175/JCLI-D-19-0351.1.
de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air–sea interaction in TOGA COARE and DYNAMO. J. Climate, 28, 597–622, https://doi.org/10.1175/JCLI-D-14-00477.1.
Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 1653–1667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.
Domingues, R., and Coauthors, 2019: Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci., 6, 446, https://doi.org/10.3389/fmars.2019.00446.
Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020: The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr., 50, 2649–2667, https://doi.org/10.1175/JPO-D-20-0043.1.
Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2021: The scale and activity of symmetric instability estimated from a global submesoscale-permitting ocean model. J. Phys. Oceanogr., 51, 1655–1670, https://doi.org/10.1175/JPO-D-20-0159.1.
Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity Experiment. Bull. Amer. Meteor. Soc., 98, 2113–2134, https://doi.org/10.1175/BAMS-D-16-0055.1.
Drivas, T. D., D. D. Holm, and J.-M. Leahy, 2020: Lagrangian averaged stochastic advection by Lie transport for fluids. J. Stat. Phys., 179, 1304–1342, https://doi.org/10.1007/s10955-020-02493-4.
Dufois, F., and Coauthors, 2017: Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies. Geophys. Res. Lett., 44, 3255–3264, https://doi.org/10.1002/2016GL072371.
du Plessis, M., S. Swart, I. J. Ansorge, A. Mahadevan, and A. F. Thompson, 2019: Southern ocean seasonal restratification delayed by submesoscale wind–front interactions. J. Phys. Oceanogr., 49, 1035–1053, https://doi.org/10.1175/JPO-D-18-0136.1.
Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52, https://doi.org/10.3402/tellusa.v1i3.8507.
Edson, J. B., and Coauthors, 2011: Direct-covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange experiment. J. Geophys. Res., 116, C00F10, https://doi.org/10.1029/2011JC007022.
Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1.
Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 3747–3764, https://doi.org/10.1029/95JC03205.
Fairall, C. W., and Coauthors, 2011: Implementation of the Coupled Ocean–Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3. J. Geophys. Res., 116, C00F09, https://doi.org/10.1029/2010JC006884.
Farrar, J. T., and Coauthors, 2020: S-MODE: The sub-mesoscale ocean dynamics experiment. IGARSS 2020–2020 IEEE Int. Geoscience and Remote Sensing Symp., Waikoloa, HI, Institute of Electrical and Electronics Engineers, 3533–3536, https://doi.org/10.1109/IGARSS39084.2020.9323112.
Feliks, Y., M. Ghil, and E. Simonnet, 2004: Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 61, 961–981, https://doi.org/10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2.
Ferreira, D., and C. Frankignoul, 2005: The transient atmospheric response to midlatitude SST anomalies. J. Climate, 18, 1049–1067, https://doi.org/10.1175/JCLI-3313.1.
Ferreira, D., and C. Frankignoul, 2008: Transient atmospheric response to interactive SST anomalies. J. Climate, 21, 576–583, https://doi.org/10.1175/2007JCLI1704.1.
Foussard, A., G. Lapeyre, and R. Plougonven, 2019a: Response of surface wind divergence to mesoscale SST anomalies under different wind conditions. J. Atmos. Sci., 76, 2065–2082, https://doi.org/10.1175/JAS-D-18-0204.1.
Foussard, A., G. Lapeyre, and R. Plougonven, 2019b: Storm track response to oceanic eddies in idealized atmospheric simulations. J. Climate, 32, 445–463, https://doi.org/10.1175/JCLI-D-18-0415.1.
Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. I: Theory and diagnosis. J. Phys. Oceanogr., 38, 1145–1165, https://doi.org/10.1175/2007JPO3792.1.
Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 61–78, https://doi.org/10.1016/j.ocemod.2010.09.002.
Fox-Kemper, B., L. Johnson, and F. Qiao, 2022: Ocean near-surface layers. Ocean Mixing, M. Meredith and A. N. Garabato, Eds., Elsevier, 65–94, https://doi.org/10.1016/B978-0-12-821512-8.00011-6.
Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in midlatitudes. Rev. Geophys., 23, 357–390, https://doi.org/10.1029/RG023i004p00357.
Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289–305, https://doi.org/10.3402/tellusa.v29i4.11362.
Frankignoul, C., N. Sennechael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762–777, https://doi.org/10.1175/2010JCLI3731.1.
Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608–612, https://doi.org/10.1038/ngeo1863.
Frenger, I., M. Münnich, and N. Gruber, 2018: Imprint of Southern Ocean mesoscale eddies on chlorophyll. Beigeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018.
Frew, N. M., D. M. Glover, E. J. Bock, and S. J. McCue, 2007: A new approach to estimation of global air–sea gas transfer velocity fields using dual-frequency altimeter backscatter. J. Geophys. Res., 112, C11003, https://doi.org/10.1029/2006JC003819.
Friehe, C. A., and Coauthors, 1991: Air–sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96, 8593–8609, https://doi.org/10.1029/90JC02062.
Gade, M., and A. Stoffelen, 2019: An introduction to microwave remote sensing of the Asian seas. Remote Sensing of the Asian Seas, V. Barale and M. Gade, Eds., Springer, 81–101, https://doi.org/10.1007/978-3-319-94067-0_4.
Gaube, P., D. B. Chelton, P. G. Strutton, and M. J. Behrenfeld, 2013: Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans, 118, 6349–6370, https://doi.org/10.1002/2013JC009027.
Gaube, P., D. J. McGillicuddy, D. B. Chelton, M. J. Behrenfeld, and P. G. Strutton, 2014: Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans, 119, 8195–8220, https://doi.org/10.1002/2014JC010111.
Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104–132, https://doi.org/10.1175/JPO-D-14-0032.1.
Gaube, P., C. C. Chickadel, R. Branch, and A. Jessup, 2019: Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale. Geophys. Res. Lett., 46, 2690–2695, https://doi.org/10.1029/2018GL080807.
Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.
Gentemann, C. L., and Coauthors, 2020: FluxSat: Measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sens., 12, 1796, https://doi.org/10.3390/rs12111796.
Gervais, M., J. Shaman, and Y. Kushnir, 2018: Mechanisms governing the development of the North Atlantic warming hole in the CESM-LE future climate simulations. J. Climate, 31, 5927–5946, https://doi.org/10.1175/JCLI-D-17-0635.1.
Gommenginger, C., and Coauthors, 2019: SEASTAR: A mission to study ocean submesoscale dynamics and small-scale atmosphere–ocean processes in coastal, shelf and polar seas. Front. Mar. Sci., 6, 457, https://doi.org/10.3389/fmars.2019.00457.
Graber, H. C., E. A. Terray, M. A. Donelan, W. M. Drennan, J. C. Van Leer, and D. B. Peters, 2000: ASIS—A new air–sea interaction spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17, 708–720, https://doi.org/10.1175/1520-0426(2000)017<0708:AANASI>2.0.CO;2.
Grist, J. P., S. A. Josey, B. Sinha, J. L. Catto, M. J. Roberts, and A. C. Coward, 2021: Future evolution of an eddy rich ocean associated with enhanced east Atlantic storminess in a coupled model projection. Geophys. Res. Lett., 48, e2021GL092719, https://doi.org/10.1029/2021GL092719.
Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016.
Haines, K., and J. Marshall, 1987: Eddy-forced coherent structures as a prototype of atmospheric blocking. Quart. J. Roy. Meteor. Soc., 113, 681–704, https://doi.org/10.1002/qj.49711347613.
Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92–103, https://doi.org/10.1016/j.ocemod.2013.08.007.
Hand, R., N. Keenlyside, N.-E. Omrani, and M. Latif, 2014: Simulated response to inter-annual SST variations in the Gulf Stream region. Climate Dyn., 42, 715–731, https://doi.org/10.1007/s00382-013-1715-y.
Haney, S., B. Fox-Kemper, K. Julien, and A. Webb, 2015: Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr., 45, 3033–3056, https://doi.org/10.1175/JPO-D-15-0044.1.
Harcourt, R., and Coauthors, 2019: Animal-borne telemetry: An integral component of the ocean observing toolkit. Front. Mar. Sci., 6, 326, https://doi.org/10.3389/fmars.2019.00326.
Harrison, C. S., M. C. Long, N. S. Lovenduski, and J. K. Moore, 2018: Mesoscale effects on carbon export: A global perspective. Global Biogeochem. Cycles, 32, 680–703, https://doi.org/10.1002/2017GB005751.
Hashizume, H., S.-P. Xie, M. Fujiwara, M. Shiotani, T. Watanabe, Y. Tanimoto, W. T. Liu, and K. Takeuchi, 2002: Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific. J. Climate, 15, 3379–3393, https://doi.org/10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2.
Hausmann, U., D. J. McGillicuddy, and J. Marshall, 2017: Observed mesoscale eddy signatures in southern ocean surface mixed-layer depth. J. Geophys. Res. Oceans, 122, 617–635, https://doi.org/10.1002/2016JC012225.
Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.
Hayasaki, M., R. Kawamura, M. Mori, and M. Watanabe, 2013: Response of extratropical cyclone activity to the Kuroshio large meander in northern winter. Geophys. Res. Lett., 40, 2851–2855, https://doi.org/10.1002/grl.50546.
Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 1500–1506, https://doi.org/10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Hewitt, H. T., and Coauthors, 2020: Resolving and parameterising the ocean mesoscale in Earth system models. Curr. Climate Change Rep., 6, 137–152, https://doi.org/10.1007/s40641-020-00164-w.
Hirata, H., and M. Nonaka, 2021: Impacts of strong warm ocean currents on development of extratropical cyclones through the warm and cold conveyor belts: A review. Tropical and Extratropical Air–Sea Interactions: Modes of Climate Variations, S. K. Behera, Ed., Elsevier, 267–293, https://doi.org/10.1016/B978-0-12-818156-0.00014-9.
Hirata, H., R. Kawamura, M. Nonaka, and K. Tsuboki, 2019: Significant impact of heat supply from the Gulf Stream on a “superbomb” cyclone in January 2018. Geophys. Res. Lett., 46, 7718–7725, https://doi.org/10.1029/2019GL082995.
Hogg, A. C., W. K. Dewar, P. Berloff, S. Kravtsov, and D. K. Hutchinson, 2009: The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 4066–4082, https://doi.org/10.1175/2009JCLI2629.1.
Holton, J. R., 1965a: The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Part I. J. Atmos. Sci., 22, 402–411, https://doi.org/10.1175/1520-0469(1965)022<0402:TIOVBL>2.0.CO;2.
Holton, J. R., 1965b: The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Part II. J. Atmos. Sci., 22, 535–540, https://doi.org/10.1175/1520-0469(1965)022<0535:TIOVBL>2.0.CO;2.
Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.
Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041–1061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.
Hotta, D., and H. Nakamura, 2011: On the significance of sensible heat supply from the ocean in the maintenance of mean baroclinicity along storm tracks. J. Climate, 24, 3377–3401, https://doi.org/10.1175/2010JCLI3910.1.
Huang, J., Y. Zhang, X.-Q. Yang, X. Ren, and H. Hu, 2020: Impacts of North Pacific subtropical and subarctic oceanic frontal zones on the wintertime atmospheric large-scale circulations. J. Climate, 33, 1897–1914, https://doi.org/10.1175/JCLI-D-19-0308.1.
Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2012: On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res., 117, D19110, https://doi.org/10.1029/2012JD017819.
Infanti, J. M., and B. P. Kirtman, 2019: A comparison of CCSM4 high-resolution and low-resolution predictions for south Florida and southeast United States drought. Climate Dyn., 52, 6877–6892, https://doi.org/10.1007/s00382-018-4553-0.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 2391 pp., https://doi.org/10.1017/9781009157896.
Jackson, L. C., and Coauthors, 2020: Impact of ocean resolution and mean state on the rate of AMOC weakening. Climate Dyn., 55, 1711–1732, https://doi.org/10.1007/s00382-020-05345-9.
Jansen, M. F., and I. M. Held, 2014: Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Modell., 80, 36–48, https://doi.org/10.1016/j.ocemod.2014.06.002.
Jing, Z., and Coauthors, 2020: Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Sci. Adv., 6, eaba7880, https://doi.org/10.1126/sciadv.aba7880.
Johnson, L., C. M. Lee, and E. A. D’Asaro, 2016: Global estimates of lateral springtime restratification. J. Phys. Oceanogr., 46, 1555–1573, https://doi.org/10.1175/JPO-D-15-0163.1.
Jones, D. G., and Coauthors, 2015: Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage. Int. J. Greenhouse Gas Control, 40, 350–377, https://doi.org/10.1016/j.ijggc.2015.05.032.
Joyce, T. M., Y.-O. Kwon, H. Seo, and C. C. Ummenhofer, 2019: Meridional Gulf Stream shifts can influence wintertime variability in the North Atlantic storm track and Greenland blocking. Geophys. Res. Lett., 46, 1702–1708, https://doi.org/10.1029/2018GL081087.
Jullien, S., S. Masson, V. Oerder, G. Samson, F. Colas, and L. Renault, 2020: Impact of ocean–atmosphere current feedback on the ocean mesoscale activity: Regional variations, and sensitivity to model resolution. J. Climate, 33, 2585–2602, https://doi.org/10.1175/JCLI-D-19-0484.1.
Jury, M. R., and S. Courtney, 1991: A transition in weather over the Agulhas Current. S. Afr. J. Mar. Sci., 10, 159–171, https://doi.org/10.2989/02577619109504629.
Karmalkar, A. V., and R. M. Horton, 2021: Drivers of exceptional coastal warming in the northeastern United States. Nat. Climate Change, 11, 854–860, https://doi.org/10.1038/s41558-021-01159-7.
Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 2596–2613, https://doi.org/10.1175/JAS-D-12-082.1.
Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nat. Climate Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8.
Kelly, K. A., S. Dickinson, M. J. McPhaden, and G. C. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 2469–2472, https://doi.org/10.1029/2000GL012610.
Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 5644–5667, https://doi.org/10.1175/2010JCLI3346.1.
Kessler, W. S., and Coauthors, 2019: Second report of TPOS 2020. Tech. Rep. GOOS-234, 265 pp., http://tpos2020.org/second-report/.
Kilpatrick, T., N. Schneider, and B. Qiu, 2014: Boundary layer convergence induced by strong winds across a midlatitude SST front. J. Climate, 27, 1698–1718, https://doi.org/10.1175/JCLI-D-13-00101.1.
Kilpatrick, T., N. Schneider, and B. Qiu, 2016: Atmospheric response to a midlatitude SST front: Alongfront winds. J. Atmos. Sci., 73, 3489–3509, https://doi.org/10.1175/JAS-D-15-0312.1.
Kim, S. Y., 2010: Observations of submesoscale eddies using high-frequency radar-derived kinematic and dynamic quantities. Cont. Shelf Res., 30, 1639–1655, https://doi.org/10.1016/j.csr.2010.06.011.
Kirincich, A., B. Emery, L. Washburn, and P. Flament, 2019: Improving surface current resolution using direction finding algorithms for multiantenna high-frequency radars. J. Atmos. Oceanic Technol., 36, 1997–2014, https://doi.org/10.1175/JTECH-D-19-0029.1.
Kirtman, B. P., and Coauthors, 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 1303–1328, https://doi.org/10.1007/s00382-012-1500-3.
Kudryavtsev, V., B. Chapron, and V. Makin, 2014: Impact of wind waves on the air–sea fluxes: A coupled model. J. Geophys. Res. Oceans, 119, 1217–1236, https://doi.org/10.1002/2013JC009412.
Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 2233–2256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.
Kuwano-Yoshida, A., and S. Minobe, 2017: Storm track response to SST fronts in the northwestern Pacific region in an AGCM. J. Climate, 30, 1081–1102, https://doi.org/10.1175/JCLI-D-16-0331.1.
Kwak, K., H. Song, J. Marshall, H. Seo, and D. McGillicuddy Jr., 2021: Suppressed pCO2 in the Southern Ocean due to the interaction between current and wind. J. Geophys. Res. Oceans, 126, e2021JC017884, https://doi.org/10.1029/2021JC017884.
Kwon, Y.-O., and T. M. Joyce, 2013: Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio-Oyashio Extension variability. J. Climate, 26, 9839–9859, https://doi.org/10.1175/JCLI-D-12-00647.1.
Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 3249–3281, https://doi.org/10.1175/2010JCLI3343.1.
Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018.
Lambaerts, J., G. Lapeyre, R. Plougonven, and P. Klein, 2013: Atmospheric response to sea surface temperature mesoscale structures. J. Geophys. Res. Atmos., 118, 9611–9621, https://doi.org/10.1002/jgrd.50769.
Lane, E. M., J. M. Restrepo, and J. C. McWilliams, 2007: Wave–current interaction: A comparison of radiation-stress and vortex-force representations. J. Phys. Oceanogr., 37, 1122–1141, https://doi.org/10.1175/JPO3043.1.
Laurindo, L. C., A. J. Mariano, and R. Lumpkin, 2017: An improved surface velocity climatology for the global ocean from drifter observations. Deep-Sea Res., 124, 73–92, https://doi.org/10.1016/j.dsr.2017.04.009.
Laurindo, L. C., L. Siqueira, A. J. Mariano, and B. P. Kirtman, 2019: Cross-spectral analysis of the SST/10-m wind speed coupling resolved by satellite products and climate model simulations. Climate Dyn., 52, 5071–5098, https://doi.org/10.1007/s00382-018-4434-6.
Lee, R. W., T. J. Woollings, B. J. Hoskins, K. D. Williams, C. H. O’Reilly, and G. Masato, 2018: Impact of Gulf Stream SST biases on the global atmospheric circulation. Climate Dyn., 51, 3369–3387, https://doi.org/10.1007/s00382-018-4083-9.
Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391–427, https://doi.org/10.1146/annurev.fl.15.010183.002135.
Lenschow, D. H., P. B. Krummel, and S. T. Siems, 1999: Measuring entrainment, divergence, and vorticity on the mesoscale from aircraft. J. Atmos. Oceanic Technol., 16, 1384–1400, https://doi.org/10.1175/1520-0426(1999)016<1384:MEDAVO>2.0.CO;2.
Lévy, M., 2008: The modulation of biological production by oceanic mesoscale turbulence. Transport and Mixing in Geophysical Flows, J. Weiss and A. Provenzale, Eds., Springer, 219–261.
Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.
Li, F., H. Sang, and Z. Jing, 2017: Quantify the continuous dependence of SST–turbulent heat flux relationship on spatial scales. Geophys. Res. Lett., 44, 6326–6333, https://doi.org/10.1002/2017GL073695.
Li, Y., and R. E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. J. Atmos. Sci., 69, 2983–2994, https://doi.org/10.1175/JAS-D-11-0245.1.
Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648–1654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.
Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.
Liu, W., A. V. Fedorov, S.-P. Xie, and S. Hu, 2020: Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876.
Liu, X., and Coauthors, 2021: Ocean fronts and eddies force atmospheric rivers and heavy precipitation in western North America. Nat. Commun., 12, 1268, https://doi.org/10.1038/s41467-021-21504-w.
López-Dekker, P., H. Rott, P. Prats-Iraola, B. Chapron, K. Scipal, and E. De Witte, 2019: Harmony: An Earth Explorer 10 mission candidate to observe land, ice, and ocean surface dynamics. IGARSS 2019–2019 IEEE Int. Geoscience and Remote Sensing Symp., Yokohama, Japan, Institute of Electrical and Electronics Engineers, 8381–8384, https://doi.org/10.1109/IGARSS.2019.8897983.
Lorenz, E., 1960: Generation of available potential energy and the intensity of the general circulation. Dynamics of Climate, R. L. Pfeffer, Ed., Pergamon Press, 86–92.
Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 2344–2360, https://doi.org/10.1175/JCLI3404.1.
Ma, X., P. Chang, R. Saravanan, R. M. J.-S. Hseih, D. Wu, X. Lin, L. Wu, and Z. Jing, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.
Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533–537, https://doi.org/10.1038/nature18640.
Ma, X., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. Wu, X. Lin, and L. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 1861–1880, https://doi.org/10.1175/JCLI-D-16-0154.1.
Mahrt, L., D. Vickers, and E. Moore, 2004: Flow adjustments across sea-surface temperature changes. Bound.-Layer Meteor., 111, 553–564, https://doi.org/10.1023/B:BOUN.0000016600.63382.5f.
Marshall, J., and Coauthors, 2009: The CLIMODE field campaign: Observing the cycle of convection and restratification over the Gulf Stream. Bull. Amer. Meteor. Soc., 90, 1337–1350, https://doi.org/10.1175/2009BAMS2706.1.
Marshall, J., J. R. Scott, K. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2014: The Ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 2287–2299, https://doi.org/10.1007/s00382-014-2308-0.
Masunaga, R., and N. Schneider, 2022: Surface wind responses to mesoscale sea surface temperature over western boundary current regions assessed by spectral transfer functions. J. Atmos. Sci., 79, 1549–1573, https://doi.org/10.1175/JAS-D-21-0125.1.
Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020a: Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Kuroshio Extension in winter. J. Climate, 33, 3–25, https://doi.org/10.1175/JCLI-D-19-0097.1.
Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020b: Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Gulf Stream and Agulhas Return Current in winter. J. Climate, 33, 9083–9101, https://doi.org/10.1175/JCLI-D-19-0948.1.
McGillicuddy, D. J., Jr. , 2016: Mechanisms of physical–biological–biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci., 8, 125–159, https://doi.org/10.1146/annurev-marine-010814-015606.
McGillicuddy, D. J., and Coauthors, 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256.
McGillis, W. R., J. B. Edson, J. E. Hare, and C. W. Fairall, 2001: Direct covariance air–sea CO2 fluxes. J. Geophys. Res., 106, 16 729–16 745, https://doi.org/10.1029/2000JC000506.
McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. Jonsson, and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 1850–1868, https://doi.org/10.1175/2010JCLI3958.1.
McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.
McWilliams, J. C., and B. Fox-Kemper, 2013: Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech., 730, 464–490, https://doi.org/10.1017/jfm.2013.348.
McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 1793–1816, https://doi.org/10.1175/JPO-D-12-07.1.
Meinig, C., and Coauthors, 2019: Public–private partnerships to advance regional ocean-observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci., 6, 448, https://doi.org/10.3389/fmars.2019.00448.
Mémin, E., 2014: Fluid flow dynamics under location uncertainty. Geophys. Astrophys. Fluid Dyn., 108, 119–146, https://doi.org/10.1080/03091929.2013.836190.
Menary, M. B., and Coauthors, 2018: Preindustrial control simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model. Earth Syst., 10, 3049–3075, https://doi.org/10.1029/2018MS001495.
Messager, C., and S. Swart, 2016: Significant atmospheric boundary layer change observed above an Agulhas current warm core eddy. Adv. Meteor., 2016, 3659657, https://doi.org/10.1155/2016/3659657.
Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206–209, https://doi.org/10.1038/nature06690.
Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 3699–3719, https://doi.org/10.1175/2010JCLI3359.1.
Miyamoto, A., H. Nakamura, and T. Miyasaka, 2018: Influence of the subtropical high and storm track on low-cloud fraction and its seasonality over the south Indian Ocean. J. Climate, 31, 4017–4039, https://doi.org/10.1175/JCLI-D-17-0229.1.
Miyamoto, A., H. Nakamura, T. Miyasaka, Y. Kosaka, B. Taguchi, and K. Nishii, 2022: Wintertime weakening of low-cloud impacts on the subtropical high in the south Indian Ocean. J. Climate, 35, 323–334, https://doi.org/10.1175/JCLI-D-21-0178.1.
Miyazawa, Y., X. Guo, S. M. Varlamov, T. Miyama, K. Yoda, K. Sato, T. Kano, and K. Sato, 2016: Assimilation of the seabird and ship drift data in the north-eastern Sea of Japan into an operational ocean nowcast/forecast system. Sci. Rep., 5, 17672, https://doi.org/10.1038/srep17672.
Miyazawa, Y., and Coauthors, 2019: Temperature profiling measurements by sea turtles improve ocean state estimation in the Kuroshio–Oyashio confluence region. Ocean Dyn., 69, 267–282, https://doi.org/10.1007/s10236-018-1238-5.
Moreno-Chamarro, E., L.-P. Caron, P. Ortega, S. Loosveldt Tomas, and M. J. Roberts, 2021: Can we trust CMIP5/6 future projections of European winter precipitation? Environ. Res. Lett., 16, 054063, https://doi.org/10.1088/1748-9326/abf28a.
Moreton, S., D. Ferreira, M. Roberts, and H. Hewitt, 2021: Air–sea turbulent heat flux feedback over mesoscale eddies. Geophys. Res. Lett., 48, e2021GL095407, https://doi.org/10.1029/2021GL095407.
Nadiga, B. T., 2008: Orientation of eddy fluxes in geostrophic turbulence. Philos. Trans. Roy. Soc., A366, 2489–2508, https://doi.org/10.1098/rsta.2008.0058.
Nakamura, H., and J. M. Wallace, 1990: Observed changes in baroclinic wave activity during the life cycles of low-frequency circulation anomalies. J. Atmos. Sci., 47, 1100–1116, https://doi.org/10.1175/1520-0469(1990)047<1100:OCIBWA>2.0.CO;2.
Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 1828–1844, https://doi.org/10.1175/1520-0442(2004)017<1828:SVITSH>2.0.CO;2.
Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–346, https://doi.org/10.1029/147GM18.
Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.
Nakamura, H., A. Nishina, and S. Minobe, 2012: Response of storm tracks to bimodal Kuroshio path states south of Japan. J. Climate, 25, 7772–7779, https://doi.org/10.1175/JCLI-D-12-00326.1.
Nakamura, H., A. Isobe, S. Minobe, H. Mitsudera, and M. Nonaka, 2015: “Hot spots” in the climate system—New developments in the extratropical ocean–atmosphere interaction research: A short review and an introduction. J. Oceanogr., 71, 463–467, https://doi.org/10.1007/s10872-015-0321-5.
Nakayama, M., H. Nakamura, and F. Ogawa, 2021: Impacts of a midlatitude oceanic frontal zone for the baroclinic annular mode in the Southern Hemisphere. J. Climate, 34, 7389–7408, https://doi.org/10.1175/JCLI-D-20-0359.1.
Newman, L., and Coauthors, 2022: The Southern Ocean Observing System 2021–2025 science and implementation plan. Zenodo, 55 pp., https://doi.org/10.5281/zenodo.6324359.
Nkwinkwa Njouodo, A. S., S. Koseki, N. Keenlyside, and M. Rouault, 2018: Atmospheric signature of the Agulhas Current. Geophys. Res. Lett., 45, 5185–5193, https://doi.org/10.1029/2018GL077042.
Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Yoshida-Kuwano, and K. Takaya, 2009: Air–sea heat exchanges characteristic to a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate, 22, 6515–6535, https://doi.org/10.1175/2009JCLI2960.1.
Ogawa, F., N.-E. Omrani, K. Nishii, H. Nakamura, and N. Keenlyside, 2015: Ozone-induced climate change propped up by the Southern Hemisphere oceanic front. Geophys. Res. Lett., 42, 10 056–10 063, https://doi.org/10.1002/2015GL066538.
Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2016: Importance of midlatitude oceanic frontal zones for the annular mode variability: Interbasin differences in the southern annular mode signature. J. Climate, 29, 6179–6199, https://doi.org/10.1175/JCLI-D-15-0885.1.
Olivier, L., and Coauthors, 2022: Impact of North Brazil current rings on air–sea CO2 flux variability in winter 2020. Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022.
Omand, M. M., E. A. D’Asaro, C. M. Lee, M. J. Perry, N. Briggs, I. Cetinić, and A. Mahadevan, 2015: Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science, 348, 222–225, https://doi.org/10.1126/science.1260062.
Omrani, N.-E., F. Ogawa, H. Nakamura, N. Keenlyside, S. W. Lubis, and K. Matthes, 2019: Key role of the ocean western boundary currents in shaping the Northern Hemisphere climate. Sci. Rep., 9, 3014, https://doi.org/10.1038/s41598-019-39392-y.
O’Neill, L. W., 2012: Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellites. J. Climate, 25, 1544–1569, https://doi.org/10.1175/JCLI-D-11-00121.1.
O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 2340–2354, https://doi.org/10.1175/2780.1.
O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 5916–5942, https://doi.org/10.1175/JCLI-D-11-00230.1.
O’Neill, L. W., T. Haack, and T. Durland, 2015: Estimation of time-averaged surface divergence and vorticity from satellite ocean vector winds. J. Climate, 28, 7596–7620, https://doi.org/10.1175/JCLI-D-15-0119.1.
O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2017: The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci., 74, 2383–2412, https://doi.org/10.1175/JAS-D-16-0213.1.
O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 52–66, https://doi.org/10.1002/qj.2334.
O’Reilly, C. H., S. Minobe, and A. Kuwano-Yoshida, 2016: The influence of the Gulf Stream on wintertime European blocking. Climate Dyn., 47, 1545–1567, https://doi.org/10.1007/s00382-015-2919-0.
O’Reilly, C. H., S. Minobe, A. Kuwano-Yoshida, and T. Woollings, 2017: The Gulf Stream influence on wintertime North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 143, 173–183, https://doi.org/10.1002/qj.2907.
Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833–838, https://doi.org/10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.
Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115–136, https://doi.org/10.1146/annurev-marine-121211-172315.
Palmer, T. N., and Z. Sun, 1985: A modeling and observational study of the relationship between sea-surface temperature in the Northwest Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc., 111, 947–975, https://doi.org/10.1002/qj.49711147003.
Parfitt, R., and A. Czaja, 2016: On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quart. J. Roy. Meteor. Soc., 142, 1554–1561, https://doi.org/10.1002/qj.2689.
Parfitt, R., and H. Seo, 2018: A new framework for near-surface wind convergence over the Kuroshio Extension and Gulf Stream in wintertime: The role of atmospheric fronts. Geophys. Res. Lett., 45, 9909–9918, https://doi.org/10.1029/2018GL080135.
Parfitt, R., A. Czaja, S. Minobe, and A. Kuwano-Yoshida, 2016: The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett., 43, 2299–2306, https://doi.org/10.1002/2016GL067723.
Peng, S., A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971–987, https://doi.org/10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.
Penny, S. G., and T. Hamill, 2017: Coupled data assimilation for integrated Earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169–ES172, https://www.jstor.org/stable/26243775.
Perlin,