The Differences between Early and Midwinter Atmospheric Responses to Sea Surface Temperature Anomalies in the Northwest Atlantic

View More View Less
  • 1 Centre for Climate and Global Change Research and Department of Atmospheric and Oceanic Sciences, MeGill University, Montreal, Quebec, Canada
  • | 2 Recherche en Prévision Numérique, Atmospheric Environment Service, Dorval, Quebec
© Get Permissions
Full access

Abstract

Using an atmospheric global spectral model, it is shown that the winter atmosphere in the midlatitudes is capable of reacting to prescribed sea surface temperature (SST) anomalies in the northwest Atlantic with two very different responses. The nature of the response is determined by the climatological conditions of the winter regime. Experiments are performed using either the perpetual November or January conditions with or without the prescribed SST anomalies.

Warm SST anomalies in November result in a highly significant anomalous ridge downstream over the Atlantic with a nearly equivalent barotropic structure; in January, the response is a statistically less significant trough. The presence of the SST anomalies also causes a northward (southward) shift of the Atlantic storm track in the November (January) cases. A diagnostic analysis of the anomalous heat advection in the simulations reveals that in the January cases, the surface heating is offset primarily by the strong horizontal cold advection in the lower troposphere. In the November cases, there is a vitally important vertical heat advection through which a potential positive ocean-atmosphere feedback was found. The positive air temperature anomalies exhibit a deep vertical penetration in the November cases but not in the January cases.

The simulated atmospheric responses to the warm SST anomalies in the November and January cases are found to be in qualitative agreement with the observational results using 50-yr ( 1930-1979) records. The atmospheric responses to the cold SST anomalies in the simulations are found to be insignificant.

Abstract

Using an atmospheric global spectral model, it is shown that the winter atmosphere in the midlatitudes is capable of reacting to prescribed sea surface temperature (SST) anomalies in the northwest Atlantic with two very different responses. The nature of the response is determined by the climatological conditions of the winter regime. Experiments are performed using either the perpetual November or January conditions with or without the prescribed SST anomalies.

Warm SST anomalies in November result in a highly significant anomalous ridge downstream over the Atlantic with a nearly equivalent barotropic structure; in January, the response is a statistically less significant trough. The presence of the SST anomalies also causes a northward (southward) shift of the Atlantic storm track in the November (January) cases. A diagnostic analysis of the anomalous heat advection in the simulations reveals that in the January cases, the surface heating is offset primarily by the strong horizontal cold advection in the lower troposphere. In the November cases, there is a vitally important vertical heat advection through which a potential positive ocean-atmosphere feedback was found. The positive air temperature anomalies exhibit a deep vertical penetration in the November cases but not in the January cases.

The simulated atmospheric responses to the warm SST anomalies in the November and January cases are found to be in qualitative agreement with the observational results using 50-yr ( 1930-1979) records. The atmospheric responses to the cold SST anomalies in the simulations are found to be insignificant.

Save