Explosive Volcanic Eruptions, the El Niño–Southern Oscillation, and U.S. Climate Variability

View More View Less
  • 1 Atmospheric and Environmental Research, Inc., Cambridge, Massachusetts
  • 2 NOAA/Aeronomy laboratory, Boulder, Colorado
© Get Permissions
Full access

Abstract

A study was conducted to identify and separate possible signals of volcanic eruptions and of the El Niño–Southern Oscillation (ENSO) in U.S. surface climate records. Anomalies of monthly mean surface air temperature and total precipitation taken from the U.S. Historical Climatology Network were composited (averaged) over years of major explosive volcanic eruptions. ENSO warm events, and ENSO cold events since the year 1900. It was assumed that volcanic eruptions and ENSO events occur independently of each other. All composite anomalies were assessed for significance with regard to several statistical and physical criteria. The composite ENSO-related anomalies were then subtracted from anomalies of temperature and precipitation associated with the volcanic eruptions.

Removal of large magnitude and highly significant anomalies associated with the ENSO warm and cold events is found to facilitate detection of volcanic signals in monthly records of U.S. temperature and precipitation. Volcanic signals are strongly suggested cast of the Continental Divide, for example, where positive monthly temperature anomalies exceeding 1°C occur during the first fall and winter after eruptions. Negative temperature anomalies occur west of the Continental Divide during the first winter and spring after eruptions and in the southern United States during the summer of the first post-eruption calendar year. Positive monthly precipitation anomalies exceeding 15 mm in magnitude are found in the southeastern United States during the first winter and spring after eruptions. Precipitation anomalies that are smaller in magnitude and yet significant, such as positive anomalies in the northwestern United States and negative anomalies in the central and eastern United States, are found during the summer of the first post-eruption calendar year.

Abstract

A study was conducted to identify and separate possible signals of volcanic eruptions and of the El Niño–Southern Oscillation (ENSO) in U.S. surface climate records. Anomalies of monthly mean surface air temperature and total precipitation taken from the U.S. Historical Climatology Network were composited (averaged) over years of major explosive volcanic eruptions. ENSO warm events, and ENSO cold events since the year 1900. It was assumed that volcanic eruptions and ENSO events occur independently of each other. All composite anomalies were assessed for significance with regard to several statistical and physical criteria. The composite ENSO-related anomalies were then subtracted from anomalies of temperature and precipitation associated with the volcanic eruptions.

Removal of large magnitude and highly significant anomalies associated with the ENSO warm and cold events is found to facilitate detection of volcanic signals in monthly records of U.S. temperature and precipitation. Volcanic signals are strongly suggested cast of the Continental Divide, for example, where positive monthly temperature anomalies exceeding 1°C occur during the first fall and winter after eruptions. Negative temperature anomalies occur west of the Continental Divide during the first winter and spring after eruptions and in the southern United States during the summer of the first post-eruption calendar year. Positive monthly precipitation anomalies exceeding 15 mm in magnitude are found in the southeastern United States during the first winter and spring after eruptions. Precipitation anomalies that are smaller in magnitude and yet significant, such as positive anomalies in the northwestern United States and negative anomalies in the central and eastern United States, are found during the summer of the first post-eruption calendar year.

Save