• Albergel, C., and et al. , 2013: Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeor., 14, 12591277, https://doi.org/10.1175/JHM-D-12-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and et al. , 2014: Understanding Australia’s hottest September on record [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95, S37S41, https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-of-2013-from-a-climate-perspective/.

    • Search Google Scholar
    • Export Citation
  • Bellprat, O., V. Guemas, F. Doblas-Reyes, and M. G. Donat, 2019: Towards reliable extreme weather and climate event attribution. Nat. Commun., 10, 1732, https://doi.org/10.1038/s41467-019-09729-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and et al. , 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952

  • Bureau of Meteorology and CSIRO, 2016: State of the Climate 2016. Bureau of Meteorology, http://www.bom.gov.au/state-of-the-climate/State-of-the-Climate-2016.pdf.

  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., P. A. Stott, G. S. Jones, H. Shiogama, T. Nozawa, and J. Luterbacher, 2012: Human activity and anomalously warm seasons in Europe. Int. J. Climatol., 32, 225239, https://doi.org/10.1002/joc.2262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., P. A. Stott, A. A. Scaife, A. Arribas, G. S. Jones, D. Copsey, J. R. Knight, and W. J. Tennant, 2013: A new HADGEM3-A-based system for attribution of weather- and climate-related extreme events. J. Climate, 26, 27562783, https://doi.org/10.1175/JCLI-D-12-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Colman, R., and et al. , 2005: BMRC Atmospheric Model (BAM) version 3.0: Comparison with mean climatology. BMRC Res. Rep. 108, 32 pp.

  • Cottrill, A., and et al. , 2013: Seasonal forecasting in the Pacific using the coupled model POAMA-2. Wea. Forecasting, 28, 668680, https://doi.org/10.1175/WAF-D-12-00072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25, 73997420, https://doi.org/10.1175/JCLI-D-11-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and et al. , 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and et al. , 2019: Global carbon budget 2019. Earth Syst. Sci. Data, 11, 17831838, https://doi.org/10.5194/essd-11-1783-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

  • Grose, M. R., M. Black, J. S. Risbey, P. Uhe, P. K. Hope, K. Haustein, and D. Mitchell, 2018: Severe frosts in western Australia in September 2016 [in “Explaining Extremes of 2016 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 99, S150S154, https://doi.org/10.1175/BAMS-D-17-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grose, M. R., M. Black, G. Wang, A. D. King, P. Hope, and D. J. Karoly, 2020: The warm and extremely dry spring in 2015 in Tasmania contained the fingerprint of human influence on the climate. J. South. Hemisph. Earth Syst. Sci., 69, 183195.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., B. J. J. M. van den Hurk, E. Min, G. J. van Oldenborgh, A. C. Petersen, D. A. Stainforth, E. Vasileiadou, and L. A. Smith, 2015: Tales of future weather. Nat. Climate Change, 5, 107113, https://doi.org/10.1038/nclimate2450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hope, P., G. Wang, E.-P. Lim, H. H. Hendon, and J. M. Arblaster, 2016: What caused the record-breaking heat across Australia in October 2015? Bull. Amer. Meteor. Soc., 97, S122S126, https://doi.org/10.1175/BAMS-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hope, P., E.-P. Lim, H. Hendon, and G. Wang, 2018: The effect of increasing CO2 on the extreme September 2016 rainfall across southeastern Australia [in “Explaining Extremes of 2016 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 99, S133S138, https://doi.org/10.1175/BAMS-D-17-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hope, P., M. T. Black, E.-P. Lim, A. Dowdy, G. Wang, R. J. B. Fawcett, and A. S. Pepler, 2019: On determining the impact of increasing atmospheric CO2 on the record fire weather in eastern Australia in February 2017 [in “Explaining Extremes of 2018 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 100, S111S117, https://doi.org/10.1175/BAMS-D-18-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, D., O. Alves, H. H. Hendon, and G. Wang, 2011: The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Climate Dyn., 36, 11551171, https://doi.org/10.1007/s00382-010-0763-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, D., A. G. Marshall, Y. Yin, O. Alves, and H. H. Hendon, 2013: Improving intraseasonal prediction with a new ensemble generation strategy. Mon. Wea. Rev., 141, 44294449, https://doi.org/10.1175/MWR-D-13-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, D., and et al. , 2017: ACCESS-S1: The new Bureau of Meteorology multi-week to seasonal prediction system. J. South. Hemisph. Earth Syst. Sci., 67, 132159, https://doi.org/10.22499/3.6703.001.

    • Search Google Scholar
    • Export Citation
  • Huggel, C., D. Stone, H. Eicken, and G. Hansen, 2015: Potential and limitations of the attribution of climate change impacts for informing loss and damage discussions and policies. Climatic Change, 133, 453467, https://doi.org/10.1007/s10584-015-1441-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, M., 2014: Attributing weather extremes to ‘climate change’: A review. Prog. Phys. Geogr., 38, 499511, https://doi.org/10.1177/0309133314538644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Jézéquel, A., P. Yiou, and J. P. Vanderlinden, 2019: Comparing scientists and delegates perspectives on the use of extreme event attribution for loss and damage. Wea. Climate Extrem., 26, 100231, https://doi.org/10.1016/j.wace.2019.100231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248, https://doi.org/10.22499/2.5804.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kew, S. F., S. Y. Philip, G. J. van Oldenborgh, F. E. L. Otto, R. Vautard, and G. van der Schrier, 2019: The exceptional summer heat wave in southern Europe 2017 [in “Explaining Extremes of 2017 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 100, S49S53, https://doi.org/10.1175/BAMS-D-18-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., D. J. Karoly, M. G. Donat, and L. V. Alexander, 2014: Climate change turns Australia’s 2013 big dry into a year of record-breaking heat [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95, S41S45, https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-of-2013-from-a-climate-perspective/.

    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., and D. J. Karoly, 2013: Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys. Res. Lett., 40, 37053709, https://doi.org/10.1002/grl.50673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., and D. J. Karoly, 2014: The role of anthropogenic forcing in the record 2013 Australia-wide annual and spring temperatures [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95, S31S34, https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-of-2013-from-a-climate-perspective/.

    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., and A. D. King, 2015: Dramatically increased rate of observed hot record breaking in recent Australian temperatures. Geophys. Res. Lett., 42, 77767784, https://doi.org/10.1002/2015GL065793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., S. E. Perkins-Kirkpatrick, and A. D. King, 2019: Approaches to attribution of extreme temperature and precipitation events using multi-model and single-member ensembles of general circulation models. Adv. Stat. Climatol. Meteor. Oceanogr., 5, 133146, https://doi.org/10.5194/ascmo-5-133-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and H. H. Hendon, 2015: Understanding and predicting the strong Southern Annular Mode and its impact on the record wet east Australian spring 2010. Climate Dyn., 44, 28072824, https://doi.org/10.1007/s00382-014-2400-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, O. Alves, Y. Yin, M. Zhao, G. Wang, D. Hudson, and G. Liu, 2009: Impact of SST bias correction on prediction of ENSO and Australian winter rainfall. CAWCR Res. Lett., 3, 8 pp, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.5362&rep=rep1&type=pdf#page=22.

  • Lim, E.-P., H. H. Hendon, P. Hope, C. Chung, F. Delage, and M. J. McPhaden, 2019: Continuation of tropical Pacific Ocean temperature trend may weaken extreme El Niño and its linkage to the southern annular mode. Sci. Rep., 9, 17044, https://doi.org/10.1038/s41598-019-53371-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F. C., and P. A. Stott, 2016: Evaluating simulated fraction of attributable risk using climate observations. J. Climate, 29, 45654575, https://doi.org/10.1175/JCLI-D-15-0566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., J.-R. Bidlot, S. T. K. Lang, A. Thorpe, N. Wedi, and M. Yamaguchi, 2014: Evaluation of medium-range forecasts for Hurricane Sandy. Mon. Wea. Rev., 142, 19621981, https://doi.org/10.1175/MWR-D-13-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and J. L. Holloway, 1975: The seasonal variation of the hydrologic cycle as simulated by a global model of the atmosphere. J. Geophys. Res., 80, 16171649, https://doi.org/10.1029/JC080i012p01617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marjanac, S., L. Patton, and J. Thornton, 2017: Acts of God, human influence and litigation. Nat. Geosci., 10, 616619, https://doi.org/10.1038/ngeo3019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., D. Hudson, M. C. Wheeler, O. Alves, H. H. Hendon, M. J. Pook, and J. S. Risbey, 2014: Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Climate Dyn., 43, 19151937, https://doi.org/10.1007/s00382-013-2016-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massey, N., and et al. , 2015: weather@home—Development and validation of a very large ensemble modelling system for probabilistic event attribution. Quart. J. Roy. Meteor. Soc., 141, 15281545, https://doi.org/10.1002/qj.2455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastrandrea, M. D., K. J. Mach, G. K. Plattner, O. Edenhofer, T. F. Stocker, C. B. Field, K. L. Ebi, and P. R. Matschoss, 2011: The IPCC AR5 guidance note on consistent treatment of uncertainties: A common approach across the working groups. Climatic Change, 108, 675691, https://doi.org/10.1007/s10584-011-0178-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1996: MOM2. Documentation, user’s guide and reference manual. GFDL Ocean Gr. Tech. Rep. 3.2, 328 pp.

  • Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382385, https://doi.org/10.1038/nature09762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., C. M. Patricola, M. F. Wehner, D. A. Stone, C. J. Paciorek, and W. D. Collins, 2017: Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Wea. Climate Extrem., 17, 16, https://doi.org/10.1016/j.wace.2017.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., S. C. Lewis, A. D. King, and L. V. Alexander, 2014: Increased simulated risk of the hot Australian summer of 2012/13 due to anthropogenic activity as measured by heat wave frequency and intensity [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95, S34S37, https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-of-2013-from-a-climate-perspective/.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., D. Argüeso, and C. J. White, 2015: Relationships between climate variability, soil moisture, and Australian heatwaves. J. Geophys. Res. Atmos., 120, 81448164, https://doi.org/10.1002/2015JD023592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., P. van Rensch, and W. Cai, 2012: Severe heat waves in southern Australia: Synoptic climatology and large scale connections. Climate Dyn., 38, 209224, https://doi.org/10.1007/s00382-011-1016-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., P. R. Briggs, V. Haverd, E. A. King, M. Paget, and C. M. Trudinger, 2009: Australian Water Availability Project (AWAP): CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3 : CAWCR Tech. Rep. 13, 72 pp.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risser, M. D., and M. F. Wehner, 2017: Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett., 44, 12 45712 464, https://doi.org/10.1002/2017GL075888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiller, A., J. Godfrey, P. McIntosh, G. Meyers, N. Smith, O. Alves, G. Wang, and R. Fiedler, 2002: A new version of the Australian community ocean model for seasonal climate prediction. CSIRO Mar. Res. Rep. 240, 79 pp.

  • Shepherd, T. G., 2016: A common framework for approaches to extreme event attribution. Curr. Climate Change Rep., 2, 2838, https://doi.org/10.1007/s40641-016-0033-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610614, https://doi.org/10.1038/nature03089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and et al. , 2016: Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev.: Climate Change, 7, 2341, https://doi.org/10.1002/wcc.380.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trewin, B. C., 2012: Techniques involved in developing the Australian Climate Observations Reference Network–Surface Air Temperature (ACORN-SAT) dataset. CAWCR Tech. Rep. 49, 92 pp.

  • van Oldenborgh, G. J., A. Urk, and M. Allen, 2012: The absence of a role of climate change in the 2011 Thailand floods [in “Explaining Extremes of 2011 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 93, 10471049, https://doi.org/10.1175/BAMS-D-12-00021.1.

    • Search Google Scholar
    • Export Citation
  • Wang, G., P. Hope, E.-P. Lim, H. H. Hendon, and J. M. Arblaster, 2016: Three methods for the attribution of extreme weather and climate events. Bureau of Meteorology Research Rep. 18, 31 pp., https://www.bom.gov.au/research/publications/researchreports/BRR-018.pdf.

    • Crossref
    • Export Citation
  • Weaver, S. J., A. Kumar, and M. Chen, 2014: Recent increases in extreme temperature occurrence over land. Geophys. Res. Lett., 41, 46694675, https://doi.org/10.1002/2014GL060300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., 2012: Ensemble forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed., I. T. Jolliffe and D. B. Stephenson, Eds., Wiley Online Books, 141–166, https://doi.org/10.1002/9781119960003.ch8.

    • Crossref
    • Export Citation
  • White, C. J., D. Hudson, and O. Alves, 2013: ENSO, the IOD and the intraseasonal prediction of heat extremes across Australia using POAMA-2. Climate Dyn., 43, 17911810, https://doi.org/10.1007/S00382-013-2007-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., O. Alves, and P. R. Oke, 2011: An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev., 139, 786808, https://doi.org/10.1175/2010MWR3419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., and T. G. Shepherd, 2017: Storylines of atmospheric circulation change for European regional climate Impact assessment. J. Climate, 30, 65616577, https://doi.org/10.1175/JCLI-D-16-0807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 625 625 71
Full Text Views 113 113 11
PDF Downloads 161 161 19

An Initialized Attribution Method for Extreme Events on Subseasonal to Seasonal Time Scales

View More View Less
  • 1 Bureau of Meteorology, Melbourne, Victoria, Australia
  • | 2 ARC Centre of Excellence for Climate Extremes, Monash University, Clayton, Victoria, Australia
  • | 3 School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

When record-breaking climate and weather extremes occur, decision-makers and planners want to know whether they are random natural events with historical levels of reoccurrence or are reflective of an altered frequency or intensity as a result of climate change. This paper describes a method to attribute extreme weather and climate events to observed increases in atmospheric CO2 using an initialized subseasonal to seasonal coupled global climate prediction system. Application of this method provides quantitative estimates of the contribution arising from increases in the level of atmospheric CO2 to individual weather and climate extreme events. Using a coupled subseasonal to seasonal forecast system differs from other methods because it has the merit of being initialized with the observed conditions and subsequently reproducing the observed events and their mechanisms. This can aid understanding when the reforecasts with and without enhanced CO2 are compared and communicated to a general audience. Atmosphere–ocean interactions are accounted for. To illustrate the method, we attribute the record Australian heat event of October 2015. We find that about half of the October 2015 Australia-wide temperature anomaly is due to the increase in atmospheric CO2 since 1960. This method has the potential to provide attribution statements for forecast events within an outlook period (i.e., before they occur). This will allow for informed messaging to be available as required when an extreme event occurs, which is of particular use to weather and climate services.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guomin Wang, guomin.wang@bom.gov.au

Abstract

When record-breaking climate and weather extremes occur, decision-makers and planners want to know whether they are random natural events with historical levels of reoccurrence or are reflective of an altered frequency or intensity as a result of climate change. This paper describes a method to attribute extreme weather and climate events to observed increases in atmospheric CO2 using an initialized subseasonal to seasonal coupled global climate prediction system. Application of this method provides quantitative estimates of the contribution arising from increases in the level of atmospheric CO2 to individual weather and climate extreme events. Using a coupled subseasonal to seasonal forecast system differs from other methods because it has the merit of being initialized with the observed conditions and subsequently reproducing the observed events and their mechanisms. This can aid understanding when the reforecasts with and without enhanced CO2 are compared and communicated to a general audience. Atmosphere–ocean interactions are accounted for. To illustrate the method, we attribute the record Australian heat event of October 2015. We find that about half of the October 2015 Australia-wide temperature anomaly is due to the increase in atmospheric CO2 since 1960. This method has the potential to provide attribution statements for forecast events within an outlook period (i.e., before they occur). This will allow for informed messaging to be available as required when an extreme event occurs, which is of particular use to weather and climate services.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guomin Wang, guomin.wang@bom.gov.au
Save