• Allan, R. P., M. A. Ringer, J. A. Pamment, and A. Slingo, 2004: Simulation of the Earth’s radiation budget by the European Centre for Medium-Range Weather Forecasts 40-year reanalysis (ERA40). J. Geophys. Res., 109, D18107, https://doi.org/10.1029/2004JD004816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A., and A. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and M. F. Cronin, 2008: Regional weather patterns during anomalous air–sea fluxes at the Kuroshio Extension Observatory (KEO). J. Climate, 21, 16801697, https://doi.org/10.1175/2007JCLI1797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, T. M., J. Vazquez, and E. Armstrong, 2013: A multi-scale, high-resolution analysis of global sea surface temperature. Algorithm Theoretical Basis Document, version 1, 13.

  • Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), last accessed 25 March 2019, https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset.

  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., M. R. Fewings, and M. García-Reyes, 2017: Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett., 44, 312319, https://doi.org/10.1002/2016GL071039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayasaki, M., R. Kawamura, M. Mori, and M. Watanabe, 2013: Response of extratropical cyclone activity to the Kuroshio large meander in northern winter. Geophys. Res. Lett., 40, 28512855, https://doi.org/10.1002/grl.50546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., M. Watanabe, H. Kawase, H. Shiogama, and M. Arai, 2019: The July 2018 high temperature event in Japan could not have happened without human-induced global warming. SOLA, 15A, 812, https://doi.org/10.2151/sola.15A-002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inatsu, M., and K. Terakura, 2012: Wintertime extratropical cyclone frequency around Japan. Climate Dyn., 38, 23072317, https://doi.org/10.1007/s00382-011-1152-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, T., 2019: A study on water vapor transport to Tohoku region regarding the Kanto Tohoku heavy rainfall in September, 2015 (in Japanese). M.S. thesis, Department of Geophysics, Tohoku University, 65 pp.

  • JMA, 2020: Climate characteristics of record-heavy rain and record-low sunshine durations in Japan in July 2020. JMA, 16 September 2020, https://ds.data.jma.go.jp/tcc/tcc/news/press_20200916.pdf.

  • Kain, J., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J., and J. Fritsch, 1993: Convective parameterization for meso-scale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., Amer. Meteor. Soc., 46, 165–170.

    • Crossref
    • Export Citation
  • Kawabe, M., 1985: Sea level variations at the Izu Islands and typical stable paths of the Kuroshio. J. Oceanogr. Soc. Japan, 41, 307326, https://doi.org/10.1007/BF02109238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawabe, M., 1987: Spectral properties of sea level and time scales of Kuroshio path variations. J. Oceanogr. Soc. Japan, 43, 111123, https://doi.org/10.1007/BF02111887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and A. Wada, 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744, https://doi.org/10.1007/s10872-007-0063-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667, https://doi.org/10.1175/2010JCLI3346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinouchi, T., 2001: A study on thermal indices for the outdoor environment (in Japanese). Tenki, 48, 661671.

  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, H., Y. Kosaka, and S.-P. Xie, 2016: A 117-year long index of the Pacific–Japan pattern with application to interdecadal variability. Int. J. Climatol., 36, 15751589, https://doi.org/10.1002/joc.4441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, M., N. Iwabe, M. F. Cronin, and H. Tomita, 2008: Surface heat fluxes from the NCEP/NCAR and NCEP/DOE reanalyses at the Kuroshio Extension Observatory buoy site. J. Geophys. Res., 113, C02009, https://doi.org/10.1029/2007JC004338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, K., and T. Tsuyuki, 1987: Development of the barotropic high around Japan and its association with Rossby wave-like propagations over the North Pacific: Analysis of August 1984. J. Meteor. Soc. Japan, 65, 237246, https://doi.org/10.2151/jmsj1965.65.2_237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and S. Minobe, 2017: Storm-track response to SST fronts in the northwestern Pacific region in an AGCM. J. Climate, 30, 10811102, https://doi.org/10.1175/JCLI-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and R. S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, and R. Montuoro, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, and D. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 18611880, https://doi.org/10.1175/JCLI-D-16-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, R., H. Nakamura, T. Miyasaka, K. Nishi, and B. Qiu, 2016: Interannual modulations of oceanic imprints on the wintertime atmospheric boundary layer under the changing dynamical regimes of the Kuroshio Extension. J. Climate, 29, 32733296, https://doi.org/10.1175/JCLI-D-15-0545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020: Processes shaping the time-mean surface wind convergence patterns in winter around the Kuroshio Extension and Gulf Stream. J. Climate, 33, 325, https://doi.org/10.1175/JCLI-D-19-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumura, S., T. Horinouchi, S. Sugimoto, and T. Sato, 2016: Response of the baiu rainband to northwest Pacific SST anomalies and its impact on atmospheric circulation. J. Climate, 29, 30753093, https://doi.org/10.1175/JCLI-D-15-0691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertz, F., M. I. Pujol, and Y. Faugére, 2018: Product user manual (CMEMS-SL812 PUM-008-032-051), version 4, 46 pp.

  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, https://doi.org/10.1175/2010JCLI3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., M. Nonaka, H. Nakamura, and A. Kuwano-Yoshida, 2012: A striking early-summer event of a convective rainband persistent along the warm Kuroshio in the East China Sea. Tellus, 64A, 18962, https://doi.org/10.3402/tellusa.v64i0.18962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murazaki, K., H. Tsujino, T. Motoi, and K. Kurihara, 2015: Influence of the Kuroshio Large Meander on the climate around Japan based on a regional climate model. J. Meteor. Soc. Japan, 93, 161179, https://doi.org/10.2151/jmsj.2015-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

    • Crossref
    • Export Citation
  • Nakamura, H., A. Nishina, and S. Minobe, 2012: Response of storm tracks to bimodal Kuroshio path states south of Japan. J. Climate, 25, 77727779, https://doi.org/10.1175/JCLI-D-12-00326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and S. Yamane, 2010: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part II: North Pacific basin. J. Climate, 23, 64456467, https://doi.org/10.1175/2010JCLI3017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and T. Miyama, 2014: Impacts of the Oyashio temperature front on the regional climate. J. Climate, 27, 78617873, https://doi.org/10.1175/JCLI-D-13-00609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112 (1), 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S.-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16, 14041413, https://doi.org/10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oda, R., and M. Kanda, 2009: Observed sea surface temperature of Tokyo Bay and its impact on urban air temperature. J. Appl. Meteor. Climatol., 48, 20542068, https://doi.org/10.1175/2009JAMC2163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 17511764, https://doi.org/10.1175/JCLI-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, E. Oka, and S. Sugimoto, 2020: On reset of the wind-forced decadal Kuroshio Extension variability in late 2017. J. Climate, 33, 10 81310 828, https://doi.org/10.1175/JCLI-D-20-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and et al. , 2006: The operational JMA non-hydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, https://doi.org/10.1175/MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., J.-I. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271304, https://doi.org/10.2151/jmsj.85B.271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., E. D. Skyllingstad, D. B. Chelton, S. K. Esbensen, L. W. O’Neill, and N. Thum, 2006: On the coupling of wind stress and sea surface temperature. J. Climate, 19, 15571566, https://doi.org/10.1175/JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and Y. Yamada, 2018: Atmospheric response to interannual variability of sea surface temperature front in the East China Sea in early summer. Climate Dyn., 51, 25092522, https://doi.org/10.1007/s00382-017-4025-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, T. Asai, and M. Inatsu, 2012: Influence of the Kuroshio in the East China Sea on the early summer (baiu) rain. J. Climate, 25, 66276645, https://doi.org/10.1175/JCLI-D-11-00727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., 2020: Scale and Rossby number dependence of observed wind responses to ocean-mesoscale sea surface temperatures. J. Atmos. Sci., 77, 31713192, https://doi.org/10.1175/JAS-D-20-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and et al. , 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over Northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, https://doi.org/10.1175/2009MWR2939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., P. Cornillon, and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res., 111, C12006, https://doi.org/10.1029/2006JC003680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., K. Aono, and S. Fukui, 2017: Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio–Oyashio confluence region. Sci. Rep., 7, 11871, https://doi.org/10.1038/s41598-017-12206-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., B. Qiu, and A. Kojima, 2020: Marked coastal warming off Tokai attributable to Kuroshio large meander. J. Oceanogr., 76, 141154, https://doi.org/10.1007/s10872-019-00531-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tachibana, Y., T. Iwamoto, M. Ogi, and Y. Watanabe, 2004: Abnormal meridional temperature gradient and its relation to the Okhotsk high. J. Meteor. Soc. Japan, 82, 13991415, https://doi.org/10.2151/jmsj.2004.1399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taft, B. A., 1972: Characteristics of the flow of the Kuroshio south of Japan. Kuroshio—Its Physical Aspects, H. Stommel and K. Yoshida, Eds., University of Tokyo Press, 165–216.

  • Takahashi, H. G., S. A. Adachi, T. Sato, M. Hara, X. Ma, and F. Kimura, 2015: An oceanic impact of the Kuroshio on surface air temperature on the Pacific coast of Japan in summer: Regional H2O greenhouse gas effect. J. Climate, 28, 71287144, https://doi.org/10.1175/JCLI-D-14-00763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takatama, K., S. Minobe, M. Inatsu, and R. J. Small, 2012: Diagnostics for near-surface wind convergence/divergence response to the Gulf Stream in a regional atmospheric model. Atmos. Sci. Lett., 13, 1621, https://doi.org/10.1002/asl.355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., T. Kanenari, H. Tokinaga, and S.-P. Xie, 2011: Sea level pressure minimum along the Kuroshio and its extension. J. Climate, 24, 44194434, https://doi.org/10.1175/2011JCLI4062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thom, E. C., 1957: A new concept for cooling degree days. Air Cond. Heat. Vent., 54, 7380.

  • Thom, E. C., 1959: The discomfort index. Weatherwise, 12, 5761, https://doi.org/10.1080/00431672.1959.9926960.

  • Tokinaga, H., Y. Tanimoto, M. Nonaka, B. Taguchi, T. Fukamachi, and S.-P. Xie, 2006: Atmospheric sounding over the winter Kuroshio Extension: Effect of surface stability on atmospheric boundary layer structure. Geophys. Res. Lett., 33, L04703, https://doi.org/10.1029/2005GL025102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, S.-P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 42414260, https://doi.org/10.1175/2009JCLI2763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vazquez-Cuervo, J., B. Dewitte, T. M. Chin, E. M. Armstrong, S. Purca, and E. Alburqueque, 2013: An analysis of SST gradients off the Peruvian coast: The impact of going to higher resolution. Remote Sens. Environ., 131, 7684, https://doi.org/10.1016/j.rse.2012.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakabayashi, S., and R. Kawamura, 2004: Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteor. Soc. Japan, 82, 15771588, https://doi.org/10.2151/jmsj.82.1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on sea surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and J. L. Kinter III, 2010: Atmosphere–ocean relationship in the midlatitude North Pacific: Seasonal dependence and east–west contrast. J. Geophys. Res., 115, D06101, https://doi.org/10.1029/2009JD012579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., J. Hafner, Y. Tanimoto, W. T. Liu, H. Tokinaga, and H. Xu, 2002: Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas. Geophys. Res. Lett., 29, 2228, https://doi.org/10.1029/2002GL015884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., H. Tokinaga, and S.-P. Xie, 2010: Atmospheric effects of the Kuroshio large meander during 2004–05. J. Climate, 23, 47044715, https://doi.org/10.1175/2010JCLI3267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., M. Xu, S.-P. Xie, and Y. Wang, 2011: Deep atmospheric response to the spring Kuroshio Current over the East China Sea. J. Climate, 24, 49594972, https://doi.org/10.1175/JCLI-D-10-05034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., H. Xu, and H. Ren, 2018: Influence of Kuroshio SST front in the East China Sea on the climatological evolution of Meiyu rainband. Climate Dyn., 50, 12431266, https://doi.org/10.1007/s00382-017-3681-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11, 463482, https://doi.org/10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaka, S., and K. Hanawa, 2006: Interannual summer temperature variations over Japan and their relation to large-scale atmospheric circulation field. J. Meteor. Soc. Japan, 84, 641652, https://doi.org/10.2151/jmsj.84.641.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 682 682 55
Full Text Views 173 173 17
PDF Downloads 208 208 24

Local Atmospheric Response to the Kuroshio Large Meander Path in Summer and Its Remote Influence on the Climate of Japan

View More View Less
  • 1 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
  • | 2 Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Kanto district in Japan, including Tokyo, has 40 million inhabitants and its summer climate is characterized by high temperature and humidity. The Kuroshio that flows off the southern coast of the Kanto district has taken a large meander (LM) path since the summer of 2017 for the first time since the 2004–05 event. Recently developed satellite observations detected marked coastal warming off the Kanto–Tokai district during the LM path period. By conducting regional atmospheric model experiments, it is found that summertime coastal warming increases water vapor in the low-level atmosphere through enhanced evaporation from the ocean and influences near-surface winds via the vertical mixing effect over the warming area. These two changes induce an increase in water vapor in Kanto district, leading to an increase in downward longwave radiation at the surface and then surface warming through a local greenhouse effect. As a result, summer in Kanto district becomes increasingly hot and humid in LM years, with double the number of discomfort days compared with non-LM years. Our simulations and supplementary observational studies reveal the significant impacts of the LM-induced coastal warming on the summertime climate in Japan, which can exceed previously identified atmospheric teleconnections and climate patterns. Our results could improve weather and seasonal climate forecasts in this region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Shusaku Sugimoto, shusaku.sugimoto.d7@tohoku.ac.jp

Abstract

The Kanto district in Japan, including Tokyo, has 40 million inhabitants and its summer climate is characterized by high temperature and humidity. The Kuroshio that flows off the southern coast of the Kanto district has taken a large meander (LM) path since the summer of 2017 for the first time since the 2004–05 event. Recently developed satellite observations detected marked coastal warming off the Kanto–Tokai district during the LM path period. By conducting regional atmospheric model experiments, it is found that summertime coastal warming increases water vapor in the low-level atmosphere through enhanced evaporation from the ocean and influences near-surface winds via the vertical mixing effect over the warming area. These two changes induce an increase in water vapor in Kanto district, leading to an increase in downward longwave radiation at the surface and then surface warming through a local greenhouse effect. As a result, summer in Kanto district becomes increasingly hot and humid in LM years, with double the number of discomfort days compared with non-LM years. Our simulations and supplementary observational studies reveal the significant impacts of the LM-induced coastal warming on the summertime climate in Japan, which can exceed previously identified atmospheric teleconnections and climate patterns. Our results could improve weather and seasonal climate forecasts in this region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Shusaku Sugimoto, shusaku.sugimoto.d7@tohoku.ac.jp
Save