• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319, https://doi.org/10.1175/JCLI-3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteor. Soc. Japan, 81, 4156, https://doi.org/10.2151/jmsj.81.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., M. K. Flatau, P. J. Flatau, and A. J. Matthews, 2016: Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent. Geophys. Res. Lett., 43, 82698276, https://doi.org/10.1002/2016GL069602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., P. A. Harr, and H. J. Chen, 2005a: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Wea. Rev., 133, 489503, https://doi.org/10.1175/MWR-2868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Z. Wang, J. McBride, and C. H. Liu, 2005b: Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, https://doi.org/10.1175/JCLI-3257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., T. Li, X. Shen, and B. Wu, 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29, 22012220, https://doi.org/10.1175/JCLI-D-15-0547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., J. Y. Yu, X. Wang, and W. P. Jiang, 2019: The changing impact mechanisms of a diverse El Niño on the western Pacific subtropical high. Geophys. Res. Lett., 46, 953962, https://doi.org/10.1029/2018GL081131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W. T., S. P. Hsu, Y. H. Tsai, and C. H. Sui, 2019: The influences of convectively coupled Kelvin waves on multiscale rainfall variability over the South China Sea and Maritime Continent in December 2016. J. Climate, 32, 69776993, https://doi.org/10.1175/JCLI-D-18-0471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, X. Lin, and J. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, https://doi.org/10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., and C. Gnanaseelan, 2007: Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years. Int. J. Climatol., 27, 14211438, https://doi.org/10.1002/joc.1482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crétat, J., P. Terray, S. Masson, and K. P. Sooraj, 2018: Intrinsic precursors and timescale of the tropical Indian Ocean dipole: Insights from partially decoupled numerical experiment. Climate Dyn., 51, 13111332, https://doi.org/10.1007/s00382-017-3956-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dyn., 38, 19651972, https://doi.org/10.1007/s00382-011-1097-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2016: Improved seasonal prediction using the SINTEX-F2 coupled model. J. Adv. Model. Earth Syst., 8, 18471867, https://doi.org/10.1002/2016MS000744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., 2019: Tropical synoptic-scale waves propagating across the Maritime Continent and northern Australia. J. Geophys. Res. Atmos., 124, 76657682, https://doi.org/10.1029/2018JD029795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007: Mechanisms for the interannual variability in the tropical Indian Ocean. Part II: Regional processes. J. Climate, 20, 29372960, https://doi.org/10.1175/JCLI4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., S. Masson, J. Vialard, C. de Boyer Montegut, S. K. Behera, G. Madec, K. Takahashi, and T. Yamagata, 2010: Low and high frequency Madden–Julian oscillations in austral summer: Interannual variations. Climate Dyn., 35, 669683, https://doi.org/10.1007/s00382-009-0655-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jian, Y., X. Lin, W. Zhou, M. Jian, M. Y. Leung, and P. K. Cheung, 2020: Analysis of record-high temperature over southeast coastal China in winter 2018/19: The combined effect of mid- to high-latitude circulation systems and SST Forcing over the North Atlantic and tropical western Pacific. J. Climate, 33, 88138831, https://doi.org/10.1175/JCLI-D-19-0732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, Y., T. Yasunari, and R. Kawamura, 2003: The role of the local Hadley circulation over the western Pacific on the zonally asymmetric anomalies over the Indian Ocean. J. Meteor. Soc. Japan, 81, 259276, https://doi.org/10.2151/jmsj.81.259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajtar, J. B., A. Santoso, M. H. England, and W. Cai, 2017: Tropical climate variability: Interactions across the Pacific, Indian, and Atlantic Oceans. Climate Dyn., 48, 21732190, https://doi.org/10.1007/s00382-016-3199-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, T., S. Masson, T. Izumo, T. Tozuka, and T. Yamagata, 2018: Can Ningaloo Niño/Niña develop without El Niño–Southern Oscillation? Geophys. Res. Lett., 45, 70407048, https://doi.org/10.1029/2018GL078188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., and T. Tozuka, 2016: Seasonal variability of the relationship between SST and OLR in the Indian Ocean and its implications for initialization in a CGCM with SST nudging. J. Oceanogr., 72, 327337, https://doi.org/10.1007/s10872-015-0329-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koseki, S., T. Y. Koh, and C. K. Teo, 2013: Effects of the cold tongue in the South China Sea on the monsoon, diurnal cycle and rainfall in the Maritime Continent. Quart. J. Roy. Meteor. Soc., 139, 15661582, https://doi.org/10.1002/qj.2052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. H., A. L. Lin, and T. Li, 2017: Effects of air–sea coupling on the eastward propagating boreal winter intraseasonal oscillation over the tropical Indian Ocean. Atmos. Oceanic Sci. Lett., 10, 5157, https://doi.org/10.1080/16742834.2017.1239187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C. P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, H., and C. P. Chang, 1981: A theory for midlatitude forcing of tropical motions during winter monsoons. J. Atmos. Sci., 38, 23772392, https://doi.org/10.1175/1520-0469(1981)038<2377:ATFMFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, S. Y., C. Marzin, P. Xavier, C.-P. Chang, and B. Timbal, 2017: Impacts of boreal winter monsoon cold surges and the interaction with MJO on Southeast Asia rainfall. J. Climate, 30, 42674281, https://doi.org/10.1175/JCLI-D-16-0546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., X. Jiang, S. P. Xie, and W. T. Liu, 2004: A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability. J. Geophys. Res., 109, C07012, https://doi.org/10.1029/2003JC002179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q. Y., D. Wang, X. Wang, Y. Shu, Q. Xie, and J. Chen, 2014: Thermal variations in the South China Sea associated with the eastern and central Pacific El Niño events and their mechanisms. J. Geophys. Res. Oceans, 119, 89558972, https://doi.org/10.1002/2014JC010429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J. J., R. Zhang, S. K. Behera, Y. Masumoto, F. F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, https://doi.org/10.1175/2009JCLI3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de Modélisation de l’Institut Pierre-Simon Laplace 27, 209 pp.

  • Marshall, A. G., O. Alves, and H. H. Hendon, 2008: An enhanced moisture convergence–evaporation feedback mechanism for MJO air–sea interaction. J. Atmos. Sci., 65, 970986, https://doi.org/10.1175/2007JAS2313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, S., P. Terray, G. Madec, J.-J. Luo, T. Yamagata, and K. Takahashi, 2012: Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dyn ., 39, 681707, https://doi.org/10.1007/s00382-011-1247-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morioka, Y., S. Masson, P. Terray, C. Prodhomme, S. K. Behera, and Y. Masumoto, 2014: Role of tropical SST variability on the formation of subtropical dipoles. J. Climate, 27, 44864507, https://doi.org/10.1175/JCLI-D-13-00506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp.

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., P. Terray, S. Masson, G. Boschat, and T. Izumo, 2015: Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Climate Dyn., 44, 9771002, https://doi.org/10.1007/s00382-014-2200-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, S., and G. Feng, 2016: Impact of the December North Atlantic Oscillation on the following February East Asian trough. J. Geophys. Res. Atmos., 121, 10 07410 088, https://doi.org/10.1002/2016JD025007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata, 2004: Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J. Climate, 17, 36443657, https://doi.org/10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. T. Song, and T. Yamagata, 2009: An introduction to the South China Sea Throughflow: Its dynamics, variability, and application for climate. Dyn. Atmos. Oceans, 47, 314, https://doi.org/10.1016/j.dynatmoce.2008.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and et al. , 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. MPI Rep. 349, 127 pp.

  • Seow, M. X. C., and T. Tozuka, 2019: Ocean thermodynamics behind the asymmetry of interannual variation of South China Sea winter cold tongue strength. Climate Dyn., 52, 32413253, https://doi.org/10.1007/s00382-018-4320-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and W. Han, 2005: Influence of the Indian Ocean dipole on atmospheric subseasonal variability. J. Climate, 18, 38913909, https://doi.org/10.1175/JCLI3510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suematsu, T., and H. Miura, 2018: Zonal SST difference as a potential environmental factor supporting the longevity of the Madden–Julian oscillation. J. Climate, 31, 75497564, https://doi.org/10.1175/JCLI-D-17-0822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, P., K. Kamala, S. Masson, G. Madec, A. K. Sahai, J. J. Luo, and T. Yamagata, 2012: The role of the intra-daily SST variability in the Indian monsoon variability and monsoon–ENSO–IOD relationships in a global coupled model. Climate Dyn., 39, 729754, https://doi.org/10.1007/s00382-011-1240-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, B., P. Tkalich, P. Malanotte-Rizzoli, B. Fricot, and J. Mas, 2016: Dynamical and thermodynamical analysis of the South China Sea winter cold tongue. Climate Dyn., 47, 16291646, https://doi.org/10.1007/s00382-015-2924-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Duliere, 2005: On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Modell., 8, 175201, https://doi.org/10.1016/j.ocemod.2003.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, H. W., J. C. Chan, and W. Zhou, 2009: The role of MJO and mid-latitude fronts in the South China Sea summer monsoon onset. Climate Dyn., 33, 827841, https://doi.org/10.1007/s00382-008-0490-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Qu, Y. Masumoto, and T. Yamagata, 2009: Impacts of the South China Sea Throughflow on seasonal and interannual variations of the Indonesian Throughflow. Dyn. Atmos. Oceans, 47, 7385, https://doi.org/10.1016/j.dynatmoce.2008.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373388, https://doi.org/10.5194/gmd-6-373-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varikoden, H., A. A. Samah, and C. A. Babu, 2010: The cold tongue in the South China Sea during boreal winter and its interaction with the atmosphere. Adv. Atmos. Sci., 27, 265273, https://doi.org/10.1007/s00376-009-8141-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 32523265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., W. Wang, D. Wang, and Q. Wang, 2006: Interannual variability of the South China sea associated with El Niño. J. Geophys. Res., 111, C03023, https://doi.org/10.1029/2005JC003333.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and et al. , 2020: Interannual variability of South China Sea winter circulation: Response to Luzon Strait transport and El Niño wind. Climate Dyn., 54, 11451159, https://doi.org/10.1007/s00382-019-05050-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F. F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, https://doi.org/10.1029/2001GL014318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., P. Malanotte-Rizzoli, M.-T. Li, and H. Wang, 2016: Decomposition of thermal and dynamic changes in the South China Sea induced by boundary forcing and surface fluxes during 1970-2000. J. Geophys. Res. Oceans, 121, 79537972, https://doi.org/10.1002/2016JC012078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2012: Two distinct modes of tropical Indian Ocean precipitation in boreal winter and their impacts on equatorial western Pacific. J. Climate, 25, 921938, https://doi.org/10.1175/JCLI-D-11-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2016: Coupled intraseasonal variations in the East Asian winter monsoon and the South China Sea–western North Pacific SST in boreal winter. Climate Dyn., 47, 20392057, https://doi.org/10.1007/s00382-015-2949-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and Z. Chen, 2015: Intraseasonal SST variations in the South China Sea during boreal winter and impacts of the East Asian winter monsoon. J. Geophys. Res. Atmos., 120, 58635878, https://doi.org/10.1002/2015JD023368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Z. Qian, 2003: The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation. J. Climate, 16, 20382051, https://doi.org/10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, F., L. Zeng, Q.-Y. Liu, W. Zhou, and D. Wang, 2018: Extreme subsurface warm events in the South China Sea during 1998/99 and 2006/07: Observations and mechanisms. Climate Dyn ., 50, 115128, https://doi.org/10.1007/S00382-017-3588-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, F., D. Wang, and M. Y. Leung, 2020: Early and extreme warming in the South China Sea during 2015/2016: Role of an unusual Indian Ocean dipole event. Geophys. Res. Lett., 47, e2020GL089936, https://doi.org/10.1029/2020GL089936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, P., P. Malanotte-Rizzoli, J. Wei, and E. A. Eltahir, 2020: Coupled ocean–atmosphere modeling over the Maritime Continent: A review. J. Geophys. Res. Oceans, 125, e2019JC014978, https://doi.org/10.1029/2019JC014978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, and Z. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 58895902, https://doi.org/10.1175/2010JCLI2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., S. Yang, and Z. Zhang, 2012: Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: Possible effects of Indian Ocean SST. J. Climate, 25, 78677883, https://doi.org/10.1175/JCLI-D-12-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L. Y., Y. Du, W. Cai, Z. Chen, T. Tozuka, J.-Y. Yu, 2020: Triggering the Indian Ocean dipole from the Southern Hemisphere. Geophys. Res. Lett., 47, e2020GL088648, https://doi.org/10.1029/2020GL088648.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, https://doi.org/10.1175/JCLI-D-12-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 249 249 31
Full Text Views 61 62 3
PDF Downloads 79 79 5

Roles of Tropical Remote Forcings on the South China Sea Winter Atmospheric and Cold Tongue Variabilities

View More View Less
  • 1 Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
  • | 2 Application Laboratory, Research Institute for Value-Added-Information Generation, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Influences from the tropical Pacific and Indian Oceans and atmospheric internal variability on the South China Sea (SCS) atmospheric circulation and cold tongue (CT) variabilities in boreal winter and the relative roles of remote forcings at interannual time scales are studied using observational data, reanalysis products, and coupled model experiments. In the observation, strong CT years are accompanied by local cyclonic wind anomalies, which are an equatorial Rossby wave response to enhanced convection over the warmer-than-normal western equatorial Pacific associated with La Niña. Also, the cyclonic wind anomalies are an atmospheric Kelvin wave response to diabatic cooling anomalies linked to both the decaying late fall negative Indian Ocean dipole (IOD) and winter atmospheric internal variability. Partially coupled experiments reveal that both the tropical Pacific air–sea coupling and atmospheric internal variability positively contribute to the coupled variability of the SCS CT, while the air–sea coupling over the tropical Indian Ocean weakens such variabilities. The northwest Pacific anticyclonic wind anomalies that usually precede El Niño–Southern Oscillation–independent negative IOD generated under the tropical Indian Ocean air–sea coupling undermine such variabilities.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0657.s1.

Corresponding author: Marvin Xiang Ce Seow, xcmarvin@eps.s.u-tokyo.ac.jp

This article is included in the YMC: Years of the Maritime Continent Special Collection.

Abstract

Influences from the tropical Pacific and Indian Oceans and atmospheric internal variability on the South China Sea (SCS) atmospheric circulation and cold tongue (CT) variabilities in boreal winter and the relative roles of remote forcings at interannual time scales are studied using observational data, reanalysis products, and coupled model experiments. In the observation, strong CT years are accompanied by local cyclonic wind anomalies, which are an equatorial Rossby wave response to enhanced convection over the warmer-than-normal western equatorial Pacific associated with La Niña. Also, the cyclonic wind anomalies are an atmospheric Kelvin wave response to diabatic cooling anomalies linked to both the decaying late fall negative Indian Ocean dipole (IOD) and winter atmospheric internal variability. Partially coupled experiments reveal that both the tropical Pacific air–sea coupling and atmospheric internal variability positively contribute to the coupled variability of the SCS CT, while the air–sea coupling over the tropical Indian Ocean weakens such variabilities. The northwest Pacific anticyclonic wind anomalies that usually precede El Niño–Southern Oscillation–independent negative IOD generated under the tropical Indian Ocean air–sea coupling undermine such variabilities.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0657.s1.

Corresponding author: Marvin Xiang Ce Seow, xcmarvin@eps.s.u-tokyo.ac.jp

This article is included in the YMC: Years of the Maritime Continent Special Collection.

Supplementary Materials

    • Supplemental Materials (PDF 626.42 KB)
Save