• Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45, 17091720, https://doi.org/10.1175/1520-0469(1988)045<1709:KWCAPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and B. Wang, 2020: Circulation factors determining the propagation speed of the Madden–Julian oscillation. J. Climate, 33, 33673380, https://doi.org/10.1175/JCLI-D-19-0661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, https://doi.org/10.1175/JCLI-D-11-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, https://doi.org/10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Li, and W. Zhu, 2015: Propagating and non-propagating MJO events over the Maritime Continent. J. Climate, 28, 84308449, https://doi.org/10.1175/JCLI-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2009: Critical roles of the stratiform rainfall in sustaining the Madden–Julian oscillation: GCM experiments. J. Climate, 22, 39393959, https://doi.org/10.1175/2009JCLI2610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, F., and et al. , 2020: Reexamining the moisture mode theories of the Madden–Julian oscillation based on observational analyses. J. Climate, 34, 839853, https://doi.org/10.1175/JCLI-D-20-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and et al. , 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and et al. , 2020: Fifty years of research on the Madden–Julian Oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res. Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2014: Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Mon. Wea. Rev., 142, 13261343, https://doi.org/10.1175/MWR-D-13-00159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2015: ECMWF and GFS model forecast verification during DYNAMO: Multiscale variability in MJO initiation over the equatorial Indian Ocean. J. Geophys. Res. Atmos., 119, 37363755, https://doi.org/10.1002/2013JD020833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008: Multicloud models for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65, 895914, https://doi.org/10.1175/2007JAS2408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, https://doi.org/10.1029/2004GL019601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and E. D. Maloney, 2017: Simulation of the Madden–Julian oscillation using general circulation models. The Global Monsoon System: Research and Forecast, C.-P. Chang et al., Eds., World Scientific, 119–130.

    • Crossref
    • Export Citation
  • Kim, D., J. S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., K. M. Weickmann, and J. E. Kutzbach, 1986: Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during Northern Hemisphere summer. Mon. Wea. Rev., 114, 605623, https://doi.org/10.1175/1520-0493(1986)114<0605:GSIOOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, https://doi.org/10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, https://doi.org/10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and K.-M. Lau, 2010: The structure and propagation of intraseasonal oscillations appearing in a GFDL general circulation model. J. Atmos. Sci., 43, 20232047, https://doi.org/10.1175/1520-0469(1986)043<2023:TSAPOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28 (1), 133, https://doi.org/10.1007/s13351-014-3087-6.

    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Wang, 1994: The influence of sea surface temperature on the tropical intraseasonal oscillation: A numerical study. Mon. Wea. Rev., 122, 23492362, https://doi.org/10.1175/1520-0493(1994)122<2349:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and C. Zhou, 2009: Planetary scale selection of the Madden–Julian oscillation. J. Atmos. Sci., 66, 24292443, https://doi.org/10.1175/2009JAS2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and P.-C. Hsu, 2017: Fundamentals of Tropical Climate Dynamics. Springer, 229 pp.

    • Crossref
    • Export Citation
  • Li, T., and F. Hu, 2019: A coupled moisture–dynamics model of the Madden–Julian oscillation: Convection interaction with first and second baroclinic modes and planetary boundary layer. Climate Dyn., 53, 55295546, https://doi.org/10.1007/s00382-019-04879-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., J. Ling, and P. Hsu, 2020: Madden–Julian oscillation: Its discovery, dynamics, and impact on East Asia. J. Meteor. Res., 34, 2042, https://doi.org/10.1007/s13351-020-9153-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274 (associated data available at https://psl.noaa.gov/data/gridded/data.interp_OLR.html).

    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2017: Effects of moisture feedback in a frictional coupled Kelvin–Rossby wave model and implication in the Madden–Julian oscillation dynamics. Climate Dyn., 48, 513522, https://doi.org/10.1175/JCLI-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, https://doi.org/10.1073/pnas.0903367106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., Á. F. Adames, and H. X. Bui, 2019: Madden–Julian oscillation changes under anthropogenic warming. Nat. Climate Change, 9, 2633, https://doi.org/10.1038/s41558-018-0331-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, P., H.-L. Ren, J.-X. Fu, J. Wu, L. Du, 2018: Impact of boreal summer intraseasonal oscillation on rainfall extremes in southeastern China and its predictability in CFSv2. J. Geophys. Res. Atmos., 123, 44234442, https://doi.org/10.1029/2017JD028043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thual, S., and A. J. Majda, 2015: A suite of skeleton models for the MJO with refined vertical structure. Math. Climate Wea. Forecasting, 1, 7095, https://doi.org/10.1515/mcwf-2015-0004.

    • Search Google Scholar
    • Export Citation
  • Thual, S., and A. J. Majda, 2016: A skeleton model for the MJO with refined vertical structure. Climate Dyn., 46, 27732786, https://doi.org/10.1007/s00382-015-2731-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, and S. N. Stechmann, 2014: A stochastic skeleton model for the MJO. J. Atmos. Sci., 71, 697715, https://doi.org/10.1175/JAS-D-13-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397413, https://doi.org/10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 13861400, https://doi.org/10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and G. Chen, 2017: A general theoretical framework for understanding essential dynamics of Madden–Julian oscillation. Climate Dyn., 49, 23092328, https://doi.org/10.1007/s00382-016-3448-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and et al. , 2018: Dynamics-oriented diagnostics for the Madden–Julian oscillation. J. Climate, 31, 31173135, https://doi.org/10.1175/JCLI-D-17-0332.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., G. Chen, and F. Liu, 2019: Diversity of the Madden–Julian oscillation. Sci. Adv., 5, eaax0220, https://doi.org/10.1126/sciadv.aax0220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and T. Li, 2020a: Effect of vertical moist static energy advection on MJO eastward propagation: Sensitivity to analysis domain. Climate Dyn., 54, 20292039, https://doi.org/10.1007/s00382-019-05101-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and T. Li, 2020b: Reexamining the MJO moisture mode theories with normalized phase evolutions. J. Climate, 33, 85238536, https://doi.org/10.1175/JCLI-D-20-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and non-propagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2013: Triggered convection, gravity waves, and the MJO: A shallow-water model. J. Atmos. Sci., 70, 24762486, https://doi.org/10.1175/JAS-D-12-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2014: A theory of the MJO horizontal scale. Geophys. Res. Lett., 41, 10591064, https://doi.org/10.1002/2013GL058542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Á. F. Adames, B. Khouider, B. Wang, and D. Yang, 2020: Four theories of the Madden–Julian Oscillation. Rev. Geophys., 58, e2019RG000685, https://doi.org/10.1029/2019RG000685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and X. Song, 2009: Interaction of deep and shallow convection is key to Madden–Julian Oscillation simulation. Geophys. Res. Lett., 36, L09708, https://doi.org/10.1029/2009GL037340.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and T. Li, 2017: Statistical extended-range forecast of winter surface air temperature and extremely cold days over China. Quart. J. Roy. Meteor. Soc., 143, 15281538, https://doi.org/10.1002/qj.3023.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 87 87 87
Full Text Views 25 25 25
PDF Downloads 27 27 27

Effects of MJO Vertically Tilted Structure on Its Phase Speed from the Moisture Mode Theory Perspective

View More View Less
  • 1 Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

The effect of vertically tilted structure (VTS) of the MJO on its phase propagation speed was investigated through the diagnosis of ERA-Interim reanalysis data during 1979–2012. A total of 84 eastward propagating MJO events were selected. It was found that all MJO events averaged throughout their life cycles exhibited a clear VTS, and the tilting strength was significantly positively correlated to the phase speed. The physical mechanism through which the VTS influenced the phase speed was investigated. On the one hand, a stronger VTS led to a stronger vertical overturning circulation and a stronger descent in the front, which caused a greater positive moist static energy (MSE) tendency in situ through enhanced vertical MSE advection. The stronger MSE tendency gradient led to a faster eastward phase speed. On the other hand, the enhanced overturning circulation in front of MJO convection led to a stronger easterly/low pressure anomaly at the top of the boundary layer, which induced a stronger boundary layer convergence and stronger ascent in the lower troposphere. This strengthened the boundary layer moisture asymmetry and favored a faster eastward propagation speed.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tim Li, timli@hawaii.edu

Abstract

The effect of vertically tilted structure (VTS) of the MJO on its phase propagation speed was investigated through the diagnosis of ERA-Interim reanalysis data during 1979–2012. A total of 84 eastward propagating MJO events were selected. It was found that all MJO events averaged throughout their life cycles exhibited a clear VTS, and the tilting strength was significantly positively correlated to the phase speed. The physical mechanism through which the VTS influenced the phase speed was investigated. On the one hand, a stronger VTS led to a stronger vertical overturning circulation and a stronger descent in the front, which caused a greater positive moist static energy (MSE) tendency in situ through enhanced vertical MSE advection. The stronger MSE tendency gradient led to a faster eastward phase speed. On the other hand, the enhanced overturning circulation in front of MJO convection led to a stronger easterly/low pressure anomaly at the top of the boundary layer, which induced a stronger boundary layer convergence and stronger ascent in the lower troposphere. This strengthened the boundary layer moisture asymmetry and favored a faster eastward propagation speed.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tim Li, timli@hawaii.edu
Save