• Abraham, J. P., and et al. , 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450–483, https://doi.org/10.1002/rog.20022.

    • Crossref
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C., and et al. , 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, https://doi.org/10.1029/2004GL021791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2016: Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies. J. Climate, 29, 48174842, https://doi.org/10.1175/JCLI-D-15-0801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2018: World Ocean Database 2018. NOAA Atlas NESDIS 87, https://data.nodc.noaa.gov/woa/WOD/DOC/wod_intro.pdf.

  • Chen, X., and K.-K. Tung, 2014: Varying planetary heat sink led to global warming slowdown and acceleration. Science, 345, 897903, https://doi.org/10.1126/science.1254937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2014: Artifacts in variations of ocean heat content induced by the observation system changes. Geophys. Res. Lett., 41, 72767283, https://doi.org/10.1002/2014GL061881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2015: Influences of the choice of climatology on ocean heat content estimation. J. Atmos. Oceanic Technol., 32, 388394, https://doi.org/10.1175/JTECH-D-14-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variation. J. Climate, 29, 53935416, https://doi.org/10.1175/JCLI-D-15-0730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., F. Zheng, and J. Zhu, 2015: Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep., 5, 14346, https://doi.org/10.1038/srep14346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution of ocean heat content related to ENSO. J. Climate, 32, 35293556, https://doi.org/10.1175/JCLI-D-18-0607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbruyères, D. G., and et al. , 2014: Full-depth temperature trends in the northeastern Atlantic through the early 21st century. Geophys. Res. Lett., 41, 79717979, https://doi.org/10.1002/2014GL061844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbruyères, D. G., E. L. McDonagh, B. A. King, and V. Thierry, 2017: Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Climate, 30, 19851997, https://doi.org/10.1175/JCLI-D-16-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, C., J. Church, N. White, P. Gleckler, S. Wijffels, P. Barker, and J. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, https://doi.org/10.1038/nature07080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, Y. Liu, and D. Chen, 2014: Global heat and salt transports by eddy movement. Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, https://doi.org/10.1175/2008JCLI2131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Export Citation
  • Gouretski, V., 2018: World Ocean Circulation Experiment–Argo Global Hydrographic Climatology. Ocean Sci., 14, 11271146, https://doi.org/10.5194/os-14-1127-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13 42113 449, https://doi.org/10.5194/acp-11-13421-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, https://doi.org/10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2019: The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Climate Dyn., 52, 73397357, https://doi.org/10.1007/s00382-017-3531-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sci. Online Lett. Atmos., 13, 163167, https://doi.org/10.2151/sola.2017-030.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., J. M. Lyman, and S. G. Purkey, 2015: Informing deep Argo array design using Argo and full-depth hydrographic section data. J. Atmos. Oceanic Technol., 32, 21872198, https://doi.org/10.1175/JTECH-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W., S.-W. Yeh, J.-H. Kim, J.-S. Kug, and M. Kwon, 2011: The unique 2009–2010 El Niño event: A fast phase transition of warm pool El Niño to La Niña. Geophys. Res. Lett., 38, L15809, https://doi.org/10.1029/2011GL048521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and et al. , 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Li, H., F. Xu, W. Zhou, D. X. Wang, J. S. Wright, Z. H. Liu, and Y. L. Lin, 2017: Development of a global gridded Argo data set with Barnes successive corrections. J. Geophys. Res. Oceans, 122, 866889, https://doi.org/10.1002/2016JC012285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., C. G. Piecuch, R. M. Ponte, G. Forget, C. Wunsch, and P. Heimbach, 2017: Change of the global ocean vertical heat transport over 1993–2010. J. Climate, 30, 53195327, https://doi.org/10.1175/JCLI-D-16-0569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., X. Liang, D. P. Chambers, and R. M. Ponte, 2020: Global patterns of spatial and temporal variability in salinity from multiple gridded Argo products. J. Climate, 33, 87518766, https://doi.org/10.1175/JCLI-D-20-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyman, J., and et al. , 2010: Robust warming of the global upper ocean. Nature, 465, 334337, https://doi.org/10.1038/nature09043.

  • Mayer, M., L. Haimberger, and M. A. Balmaseda, 2014: On the energy exchange between tropical ocean basins related to ENSO. J. Climate, 27, 63936403, https://doi.org/10.1175/JCLI-D-14-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and et al. , 2017: Ocean heat content variability and change in an ensemble of ocean reanalyses. Climate Dyn., 49, 909930, https://doi.org/10.1007/s00382-015-2801-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riser, S. C., and et al. , 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, https://doi.org/10.1038/nclimate2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81–100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Export Citation
  • Roemmich, D., and J. Gilson, 2011: The global ocean imprint of ENSO. Geophys. Res. Lett., 38, L13606, https://doi.org/10.1029/2011GL047992.

  • Roemmich, D., and et al. , 2009: The Argo Program observing the global ocean with profiling floats. Oceanography, 22, 34–43, https://doi.org/10.3389/fmars.2019.00439.

    • Crossref
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and et al. , 2019: On the future of Argo: A global, full-depth, multi-disciplinary array. Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2019: Eddy-resolving in situ ocean climatologies of temperature and salinity in the northwest Atlantic Ocean. J. Geophys. Res. Oceans, 124, 4158, https://doi.org/10.1029/2018JC014548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and et al. , 2015: Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys. Res. Lett., 42, 12051213, https://doi.org/10.1002/2014GL062669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., M. S. Martins, J. Köhler, and A. Köhl, 2021: How well do we know ocean salinity and its changes? Prog. Oceanogr., 190, 102478, https://doi.org/10.1016/j.pocean.2020.102478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, E. A. D’Asaro, C. M. Lee, J. M. Klymak, and A. Shcherbina, 2016: Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. J. Phys. Oceanogr., 46, 197217, https://doi.org/10.1175/JPO-D-15-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, https://doi.org/10.1002/2013EF000165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, https://doi.org/10.1029/2000JD000298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and L. Smith, 2005: Interannual variability of patterns of atmospheric mass distribution. J. Climate, 18, 28122825, https://doi.org/10.1175/JCLI3333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. Cheng, 2016: Insights into Earth’s energy imbalance from multiple sources. J. Climate, 29, 74957505, https://doi.org/10.1175/JCLI-D-16-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and et al. , 2016: An imperative to monitor Earth’s energy imbalance. Nat. Climate Change, 6, 138144, https://doi.org/10.1038/nclimate2876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and et al. , 2020: Heat stored in the Earth system: Where does the energy go? Earth Syst. Sci. Data, 12, 20132041, https://doi.org/10.5194/essd-12-2013-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G. J., L. J. Cheng, T. Boyer, and C. Li, 2017: Halosteric sea level changes during the Argo era. Water, 9, 484, https://doi.org/10.3390/w9070484.

  • Wang, G. J., L. J. Cheng, J. Abraham, and C. Li, 2018: Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. Climate Dyn., 50, 24712487, https://doi.org/10.1007/s00382-017-3751-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and et al. , 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nat. Climate Change, 6, 116118, https://doi.org/10.1038/nclimate2924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2014: Bidecadal thermal changes in the abyssal ocean. J. Phys. Oceanogr., 44, 20132030, https://doi.org/10.1175/JPO-D-13-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Yu, and Y. M. Okumura, 2016: Distinct energy budgets for anthropogenic and natural changes during global warming hiatus. Nat. Geosci., 9, 29–33, https://doi.org/10.1038/ngeo2581.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 198 198 198
Full Text Views 43 43 43
PDF Downloads 62 62 62

A Comparison of the Variability and Changes in Global Ocean Heat Content from Multiple Objective Analysis Products during the Argo Period

View More View Less
  • 1 a School of Marine Science and Policy, University of Delaware, Lewes, Delaware
  • | 2 b Atmospheric and Environmental Research, Lexington, Massachusetts
  • | 3 c College of Marine Science, University of South Florida, St. Petersburg, Florida
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Ocean heat content (OHC) is key to estimating the energy imbalance of the Earth system. Over the past two decades, an increasing number of OHC studies were conducted using oceanic objective analysis (OA) products. Here we perform an intercomparison of OHC from eight OA products with a focus on their robust features and significant differences over the Argo period (2005–19), when the most reliable global-scale oceanic measurements are available. For the global ocean, robust warming in the upper 2000 m is confirmed. The 0–300-m layer shows the highest warming rate but is heavily modulated by interannual variability, particularly El Niño–Southern Oscillation. The 300–700- and 700–2000-m layers, on the other hand, show unabated warming. Regionally, the Southern Ocean and midlatitude North Atlantic show a substantial OHC increase, and the subpolar North Atlantic displays an OHC decrease. A few apparent differences in OHC among the examined OA products were identified. In particular, temporal means of a few OA products that incorporated other ocean measurements besides Argo show a global-scale cooling difference, which is likely related to the baseline climatology fields used to generate those products. Large differences also appear in the interannual variability in the Southern Ocean and in the long-term trends in the subpolar North Atlantic. These differences remind us of the possibility of product-dependent conclusions on OHC variations. Caution is therefore warranted when using merely one OA product to conduct OHC studies, particularly in regions and on time scales that display significant differences.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinfeng Liang, xfliang@udel.edu

Abstract

Ocean heat content (OHC) is key to estimating the energy imbalance of the Earth system. Over the past two decades, an increasing number of OHC studies were conducted using oceanic objective analysis (OA) products. Here we perform an intercomparison of OHC from eight OA products with a focus on their robust features and significant differences over the Argo period (2005–19), when the most reliable global-scale oceanic measurements are available. For the global ocean, robust warming in the upper 2000 m is confirmed. The 0–300-m layer shows the highest warming rate but is heavily modulated by interannual variability, particularly El Niño–Southern Oscillation. The 300–700- and 700–2000-m layers, on the other hand, show unabated warming. Regionally, the Southern Ocean and midlatitude North Atlantic show a substantial OHC increase, and the subpolar North Atlantic displays an OHC decrease. A few apparent differences in OHC among the examined OA products were identified. In particular, temporal means of a few OA products that incorporated other ocean measurements besides Argo show a global-scale cooling difference, which is likely related to the baseline climatology fields used to generate those products. Large differences also appear in the interannual variability in the Southern Ocean and in the long-term trends in the subpolar North Atlantic. These differences remind us of the possibility of product-dependent conclusions on OHC variations. Caution is therefore warranted when using merely one OA product to conduct OHC studies, particularly in regions and on time scales that display significant differences.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinfeng Liang, xfliang@udel.edu
Save