• Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., G. A. Meehl, and D. J. Karoly, 2011: Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases. Geophys. Res. Lett., 38, L02701, https://doi.org/10.1029/2010GL045384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and K. Fraedrich, 1989: Topographic effects on the mean tropospheric flow patterns around Antarctica. J. Atmos. Sci., 46, 34013415, https://doi.org/10.1175/1520-0469(1989)046<3401:TEOTMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 11–15.

  • Boisier, J. P., R. Rondanelli, R. Garreaud, and F. Muñoz, 2016:Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett., 43, 413421, https://doi.org/10.1002/2015GL067265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisier, J. P., and et al. , 2019: Anthropogenic drying in central-southern Chile evidenced by long term observations and climate model simulations. Elementa: Sci. Anthrop., 6, 74, https://doi.org/10.1525/elementa.328.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2012: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 6, 139145, https://doi.org/10.1038/ngeo1671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2006: SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian winter rainfall reduction? Geophys. Res. Lett., 33, L24708, https://doi.org/10.1029/2006GL028037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, https://doi.org/10.1029/2012GL051736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., and R. L. Fogt, 2015: South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J. Geophys. Res. Atmos., 120, 27732792, https://doi.org/10.1002/2014JD022940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., J. A. Renwick, and J. McGregor, 2017a: Large-scale forcing of the Amundsen Sea low and its influence on sea ice and west Antarctic temperature. J. Climate, 30, 84058424, https://doi.org/10.1175/JCLI-D-16-0891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., J. A. Renwick, and J. McGregor, 2017b: Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere zonal-mean circulation. Climate Dyn., 49, 113129, https://doi.org/10.1007/s00382-016-3329-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., 1997: Variability in annual mean circulation in southern high latitudes. Climate Dyn., 13, 745756, https://doi.org/10.1007/s003820050195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and et al. , 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 527–582.

  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and E. J. Steig, 2013: Temperature change on the Antarctic Peninsula linked to the tropical Pacific. J. Climate, 26, 75707585, https://doi.org/10.1175/JCLI-D-12-00729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, https://doi.org/10.1175/JCLI-D-11-00523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. R., L. M. Polvani, K. L. Smith, L. Landrum, and M. M. Holland, 2016: Robust response of the Amundsen Sea low to stratospheric ozone depletion. Geophys. Res. Lett., 43, 82078213, https://doi.org/10.1002/2016GL070055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falvey, M., and R. Garreaud, 2009: Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J. Geophys. Res., 114, D04102, https://doi.org/10.1029/2008JD010519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flatau, M., and Y.-J. Kim, 2013: Interaction between the MJO and polar circulations. J. Climate, 26, 35623574, https://doi.org/10.1175/JCLI-D-11-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997, https://doi.org/10.1175/JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and G. Marshall, 2020: The southern annular mode: Variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdiscip. Rev.: Climate Change, 11, 524, https://doi.org/10.1002/wcc.652.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., A. J. Wovrosh, R. A. Langen, and I. Simmonds, 2012: The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas low. J. Geophys. Res. Atmos., 117, D07111, https://doi.org/10.1029/2011JD017337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and A. Hoell, 2015: The leading mode of observed and CMIP5 ENSO-residual sea surface temperatures and associated changes in Indo-Pacific climate. J. Climate, 28, 43094329, https://doi.org/10.1175/JCLI-D-14-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and L. M. Polvani, 2015: Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends. Geophys. Res. Lett., 42, 10 82410 831, https://doi.org/10.1002/2015GL066942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2007: Precipitation and circulation covariability in the extratropics. J. Climate, 20, 47894797, https://doi.org/10.1175/JCLI4257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and et al. , 2017: The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci., 21, 63076327, https://doi.org/10.5194/hess-21-6307-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., J. P. Boisier, R. Rondanelli, A. Montecinos, H. Sepúlveda, and D. Veloso-Águila, 2019: The central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol., 40, 421439, https://doi.org/10.1002/joc.6219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., and E. D. Maloney, 2018: The impact of the Madden–Julian oscillation on high-latitude winter blocking during El Niño–Southern Oscillation events. J. Climate, 31, 52935318, https://doi.org/10.1175/JCLI-D-17-0721.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Series No. 27, ECMWF, Reading, United Kingdom, 63 pp.

  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, https://doi.org/10.5194/acp-7-5229-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., L. Tao, and J. Liu, 2013: Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30, 790795, https://doi.org/10.1007/s00376-012-2187-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irving, D., and I. Simmonds, 2016: A new method for identifying the Pacific–South American pattern and its influence on regional climate variability. J. Climate, 29, 61096125, https://doi.org/10.1175/JCLI-D-15-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865–879. https://doi.org/10.1002/joc.1169.

    • Crossref
    • Export Citation
  • Jones, J., and et al. , 2016: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Climate Change, 6, 917926, https://doi.org/10.1038/nclimate3103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 1239–1252, https://doi.org/10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Crossref
    • Export Citation
  • Kidson, J. W., 1999: Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP–NCAR reanalyses. J. Climate, 12, 2808–2830, https://doi.org/10.1175/1520-0442(1999)012<2808:PMOSHL>2.0.CO;2.

    • Crossref
    • Export Citation
  • Kucharski, F., F. Molteni, M. King, R. Farneti, I. Kang, and L. Feudale, 2013: On the need of intermediate complexity general circulation models: A “SPEEDY” example. Bull. Amer. Meteor. Soc., 94, 2530, https://doi.org/10.1175/BAMS-D-11-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lachlan-Cope, T., and W. Connolley, 2006: Teleconnections between the tropical Pacific and the Amundsen-Bellinghausens Sea: Role of the El Niño/Southern Oscillation. J. Geophys. Res. Atmos., 111, D23101, https://doi.org/10.1029/2005JD006386.

    • Crossref
    • Export Citation
  • Lachlan-Cope, T., W. Connolley, and J. Turner, 2001: The role of the non-axisymmetric Antarctic orography in forcing the observed pattern of variability of the Antarctic climate. Geophys. Res. Lett., 28, 41114114, https://doi.org/10.1029/2001GL013465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-J., and K.-H. Seo, 2019: Impact of the Madden-Julian oscillation on Antarctic sea ice and its dynamical mechanism. Sci. Rep., 9, 10 761, https://doi.org/10.1038/s41598-019-47150-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and et al. , 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, https://doi.org/10.1038/nature12945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2015: Rossby waves mediate impacts of tropical oceans on west Antarctic atmospheric circulation in austral winter. J. Climate, 28, 81518164, https://doi.org/10.1175/JCLI-D-15-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, https://doi.org/10.1029/2008GL036076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2012: A multiscale framework for the origin and variability of the South Pacific convergence zone. Quart. J. Roy. Meteor. Soc., 138, 11651178, https://doi.org/10.1002/qj.1870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, C. M. Bitz, C. T. Y. Chung, and H. Teng, 2016: Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci., 9, 590595, https://doi.org/10.1038/ngeo2751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parametrizations. I: Model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175191, https://doi.org/10.1007/s00382-002-0268-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montecinos, A., A. Díaz, and P. Aceituno, 2000: Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J. Climate, 13, 746758, https://doi.org/10.1175/1520-0442(2000)013<0746:SDAPOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. Correa, and S. W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, https://doi.org/10.1175/2010JCLI3772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Previdi, M., and G. B. Liepert, 2007: Annular modes and Hadley cell expansion under global warming. Geophys. Res. Lett., 34, L22701, https://doi.org/10.1029/2007GL031243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purich, A., and et al. , 2016: Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Climate, 29, 89318948, https://doi.org/10.1175/JCLI-D-16-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., and et al. , 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Amer. Meteor. Soc., 97, 111121, https://doi.org/10.1175/BAMS-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Export Citation
  • Rivera, J., O. Penalba, R. Villalba, and D. Araneo, 2017: Spatiotemporal patterns of the 2010–2015 extreme hydrological drought across the central Andes, Argentina. Water, 9, 652669, https://doi.org/10.3390/w9090652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saurral, R., F. Doblas-Reyes, and J. García-Serrano, 2018: Observed modes of sea surface temperature variability in the South Pacific region. Climate Dyn., 50, 11291143, https://doi.org/10.1007/s00382-017-3666-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. Deser, and T. Fan, 2015: Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the southern Ocean westerly winds. J. Climate, 28, 93509372, https://doi.org/10.1175/JCLI-D-15-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., S. McGregor, A. S. Taschetto, L. M. Ciasto, and M. H. England, 2014: Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Climate, 27, 49234936, https://doi.org/10.1175/JCLI-D-13-00615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S., R. Massom, D. Rind, and D. Martinson, 2012: Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett., 39, L06501, https://doi.org/10.1029/2012GL050874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48, 21592178, https://doi.org/10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, https://doi.org/10.1002/2013EF000165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nat. Climate Change, 4, 911916, https://doi.org/10.1038/nclimate2341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Phillips, J. S. Hosking, G. J. Marshall, and A. Orr, 2013: The Amundsen Sea low. Int. J. Climatol., 33, 18181829, https://doi.org/10.1002/joc.3558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, H., and R. L. Jenne, 1972: The zonal harmonic standing waves in the Southern Hemisphere. J. Geophys. Res., 77, 9921003, https://doi.org/10.1029/JC077i006p00992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D., S. Lee, F. Landerer, and R. Lumpkin, 2017: Decade-long deep-ocean warming detected in the subtropical South Pacific. Geophys. Res. Lett., 44, 927936, https://doi.org/10.1002/2016GL071661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., E. Franquist, R. Garreaud, W. Lavado, and C. Bolivar Cáceres, 2015: Impact of the global warming hiatus on Andean temperature. J. Geophys. Res., 120, 37453757, https://doi.org/10.1002/2015JD023126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

    • Crossref
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiu, Y. Y. S., and A. C. Maycock, 2019: On the seasonality of the El Niño teleconnection to the Amundsen Sea region. J. Climate, 32, 4829–4845, https://doi.org/10.1175/JCLI-D-18-0813.1.

    • Search Google Scholar
    • Export Citation
  • You, Y., and J. Furtado, 2017: The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys. Res. Lett., 44, 74387446, https://doi.org/10.1002/2017GL073475.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3522 3522 364
Full Text Views 130 130 20
PDF Downloads 170 170 17

The South Pacific Pressure Trend Dipole and the Southern Blob

View More View Less
  • 1 a Department of Geophysics, Universidad de Chile, Santiago, Chile
  • | 2 b School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
  • | 3 c Climatología, Dirección Meteorológica de Chile, Santiago, Chile
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

During the last four decades, the sea level pressure has been decreasing over the Amundsen–Bellingshausen Sea (ABS) region and increasing between 30° and 40°S from New Zealand to Chile, thus forming a pressure trend dipole across the South Pacific. The trends are strongest in austral winter and have influenced the climate of West Antarctica and South America. The pressure trends have been attributed to decadal variability in the tropics, expansion of the Hadley cell, and an associated positive trend of the southern annular mode, but these mechanisms explain only about half of the pressure trend dipole intensity. Experiments conducted with two atmospheric models indicate that upper ocean warming over the subtropical southwest Pacific (SSWP), termed the Southern Blob, accounts for about half of the negative pressure trend in the ABS region and nearly all the ridging/drying over the eastern subtropical South Pacific, thus contributing to the central Chile megadrought. The SSWP warming intensifies the pressure trend dipole through warming the troposphere across the subtropical South Pacific and shifting the midlatitude storm track poleward into the ABS. Multidecadal periods of strong SSWP warming also appear in fully coupled preindustrial simulations, associated with a pressure trend dipole and reduction in rainfall over the central tropical Pacific, thus suggesting a natural origin of the Southern Blob and its teleconnection. However, the current warming rate exceeds the range of natural variability, implying a likely additional anthropogenic contribution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: René D. Garreaud, rgarreau@uchile.cl

Abstract

During the last four decades, the sea level pressure has been decreasing over the Amundsen–Bellingshausen Sea (ABS) region and increasing between 30° and 40°S from New Zealand to Chile, thus forming a pressure trend dipole across the South Pacific. The trends are strongest in austral winter and have influenced the climate of West Antarctica and South America. The pressure trends have been attributed to decadal variability in the tropics, expansion of the Hadley cell, and an associated positive trend of the southern annular mode, but these mechanisms explain only about half of the pressure trend dipole intensity. Experiments conducted with two atmospheric models indicate that upper ocean warming over the subtropical southwest Pacific (SSWP), termed the Southern Blob, accounts for about half of the negative pressure trend in the ABS region and nearly all the ridging/drying over the eastern subtropical South Pacific, thus contributing to the central Chile megadrought. The SSWP warming intensifies the pressure trend dipole through warming the troposphere across the subtropical South Pacific and shifting the midlatitude storm track poleward into the ABS. Multidecadal periods of strong SSWP warming also appear in fully coupled preindustrial simulations, associated with a pressure trend dipole and reduction in rainfall over the central tropical Pacific, thus suggesting a natural origin of the Southern Blob and its teleconnection. However, the current warming rate exceeds the range of natural variability, implying a likely additional anthropogenic contribution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: René D. Garreaud, rgarreau@uchile.cl

Supplementary Materials

    • Supplemental Materials (PDF 3.35 MB)
Save