• Albern, N., A. Voigt, and J. G. Pinto, 2019: Cloud-radiative impact on the regional responses of the midlatitude jet streams and storm tracks to global warming. J. Adv. Model. Earth Syst., 11, 19401958, https://doi.org/10.1029/2018MS001592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albern, N., A. Voigt, D. W. J. Thompson, and J. G. Pinto, 2020: The role of tropical, midlatitude, and polar cloud-radiative changes for the midlatitude circulation response to global warming. J. Climate, 33, 79277943, https://doi.org/10.1175/JCLI-D-20-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Climate, 32, 36553680, https://doi.org/10.1175/JCLI-D-18-0563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., B. Medeiros, A. C. Clement, and J. G. Olson, 2020: Investigating the role of cloud-radiation interactions in subseasonal tropical disturbances. Geophys. Res. Lett., 47, e2019GL086817, https://doi.org/10.1029/2019GL086817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, D. B., K. C. Armour, G. H. Roe, N. Siler, and N. Feldl, 2018: Sources of uncertainty in the meridional pattern of climate. Geophys. Res. Lett., 45, 91319140, https://doi.org/10.1029/2018GL079429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, https://doi.org/10.1175/JCLI-D-15-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and T. G. Shepherd, 2017: Contributions of climate feedbacks to changes in atmospheric circulation. J. Climate, 30, 90979118, https://doi.org/10.1175/JCLI-D-17-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. J. Climate, 41, 32443250, https://doi.org/10.1002/2014GL060043.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., D. L. Hartmann, and M. J. Webb, 2016a: Mechanisms of the negative shortwave cloud feedback in middle to high latitudes. J. Climate, 29, 139157, https://doi.org/10.1175/JCLI-D-15-0327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., D. T. McCoy, and D. L. Hartmann, 2016b: Observational evidence for a negative shortwave cloud feedback in middle to high latitudes. Geophys. Res. Lett., 43, 13311339, https://doi.org/10.1002/2015GL067499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., and H. Chepfer, 2013: Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP. J. Geophys. Res., 118, 79227937, https://doi.org/10.1002/jgrd.50376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, https://doi.org/10.1146/annurev-earth-042711-105545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, G. H. Roe, D. S. Battisti, and L. Hahn, 2020: The partitioning of meridional heat transport from the last glacial maximum to CO2 quadrupling in coupled climate models. J. Climate, 33, 41414165, https://doi.org/10.1175/JCLI-D-19-0797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., S. Bordoni, and T. M. Merlis, 2017: Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport. J. Climate, 30, 189201, https://doi.org/10.1175/JCLI-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y. T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and S. C. Sherwood, 2016: Processes responsible for cloud feedback. Curr. Climate Change Rep., 2, 179189, https://doi.org/10.1007/s40641-016-0052-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 43954411, https://doi.org/10.1175/JCLI-D-16-0818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., J. Marshall, and J.-M. Campin, 2019: The “sticky” ITCZ: Ocean-moderated ITCZ shifts. Climate Dyn., 53 (1–2), 119, https://doi.org/10.1007/s00382-019-04623-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., B. Medeiros, J. J. Benedict, and J. G. Olson, 2019: Investigating the influence of cloud radiative effects on the extratropical storm tracks. Geophys. Res. Lett., 46, 77007707, https://doi.org/10.1029/2019GL083542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hartmann, D., and K. Larson, 2002: An important constraint on tropical cloud—climate feedback. Geophys. Res. Lett., 29, 1951, https://doi.org/10.1029/2002GL015835.

    • Crossref
    • Export Citation
  • Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 22792295, https://doi.org/10.1007/s00382-016-3205-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., 2005: Can global warming affect tropical ocean heat transport? Geophys. Res. Lett., 32, L22701, https://doi.org/10.1029/2005GL023450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., Z. Liu, and A. Hu, 2019: The transient response of atmospheric and oceanic heat transports to anthropogenic warming. Nat. Climate Change, 9, 222226, https://doi.org/10.1038/s41558-018-0387-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and M. Zhang, 2014: The implication of radiative forcing and feedback for meridional energy transport. Geophys. Res. Lett., 41, 16651672, https://doi.org/10.1002/2013GL059079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y. T., and D. M. W. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, https://doi.org/10.1029/2010GL045440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y. T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, https://doi.org/10.1073/pnas.1213302110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and S.-P. Xie, 2017: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. Npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and F. Codron, 2018: The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM. Geosci. Lett., 5, 22, https://doi.org/10.1186/s40562-018-0124-9.

    • Crossref
    • Export Citation
  • Kang, S. M., and et al. , 2019: Extratropical–tropical interaction model intercomparison project (ETIN-MIP): Protocol and initial results. Bull. Amer. Meteor. Soc., 100, 25892605, https://doi.org/10.1175/BAMS-D-18-0301.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., R. G. Graversen, D. Klocke, P. L. Langen, B. Stevens, and L. Tomassini, 2013: Climate feedback efficiency and synergy. Climate Dyn., 41, 25392554, https://doi.org/10.1007/s00382-013-1808-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and et al. , 2016: Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate? Geophys. Res. Lett., 43, 11 05711 063, https://doi.org/10.1002/2016GL071150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middlemas, E. A., A. C. Clement, B. Medeiros, and B. Kirtman, 2019: Cloud radiative feedbacks and El Niño–Southern Oscillation. J. Climate, 32, 46614680, https://doi.org/10.1175/JCLI-D-18-0842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middlemas, E. A., J. E. Kay, B. M. Medeiros, and E. A. Maroon, 2020: Quantifying the influence of cloud radiative feedbacks on Arctic surface warming using cloud locking in an Earth system model. Geophys. Res. Lett., 47, e2020GL089207, https://doi.org/10.1029/2020GL089207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooring, T. A., and T. A. Shaw, 2020: Atmospheric diffusivity: A new energetic framework for understanding the midlatitude circulation response to climate change. J. Geophys. Res., 125, e2019JD031206, https://doi.org/10.1029/2019JD031206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., A., Conley, and F. Vitt, 2018: Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data, 10, 317324, https://doi.org/10.5194/essd-10-317-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, H. G., and W. R. Boos, 2019: Feedbacks and eddy diffusivity in an energy balance model of tropical rainfall shifts. AGU Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A21T-2787, https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/558872.

  • Rädel, G., T. Mauritsen, B. Stevens, D. Dommenget, D. Matei, K. Bellomo, and A. Clement, 2016: Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nat. Geosci., 9, 106110, https://doi.org/10.1038/ngeo2630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., N. Feldl, K. C. Armour, Y. Hwang, and D. M. W. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, https://doi.org/10.1038/ngeo2346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2017: Feedback of atmosphere–ocean coupling on shifts of the intertropical convergence zone. Geophys. Res. Lett., 44, 11 644–11 653, https://doi.org/10.1002/2017GL075817.

    • Crossref
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. C. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and et al. , 2006: Investigating the cause of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., J. B. Palter, T. M. Merlis, Y. Huang, and Y. Xia, 2016: Large-scale ocean circulation–cloud interactions reduce the pace of transient climate change. Geophys. Res. Lett., 43, 39353943, https://doi.org/10.1002/2016GL067931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2016: Impact of regional atmospheric cloud radiative changes on shifts of the extratropical jet stream in response to global warming. J. Climate, 29, 83998421, https://doi.org/10.1175/JCLI-D-16-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., N. Albern, and G. Papavasileiou, 2019: The atmospheric pathway of the cloud-radiative impact on the circulation response to global warming: Important and uncertain. J. Climate, 32, 30513067, https://doi.org/10.1175/JCLI-D-18-0810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., M. Ting, R. Seager, H. P. Huang, and M. A. Cane, 2011: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn., 37, 5372, https://doi.org/10.1007/s00382-010-0776-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, Y. Ming, W. Yu, and S. M. Kang, 2018: Contrasting impacts of radiative forcing in the Southern Ocean versus southern tropics on ITCZ position and energy transport in one GFDL climate model. J. Climate, 31, 56095628, https://doi.org/10.1175/JCLI-D-17-0566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Q. Li, K. Wang, Y. Sun, and D. Sun, 2015: Decomposing the meridional heat transport in the climate system. Climate Dyn., 44, 27512768, https://doi.org/10.1007/s00382-014-2380-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, S., and M. S. Pritchard, 2019: A strong role for the AMOC in partitioning global energy transport and shifting ITCZ position in response to latitudinally discrete solar forcing in CESM1.2. J. Climate, 32, 22072226, https://doi.org/10.1175/JCLI-D-18-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, https://doi.org/10.1175/JCLI-D-11-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012a: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, https://doi.org/10.1175/JCLI-D-11-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012b: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 37363754, https://doi.org/10.1175/JCLI-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 131 131 131
Full Text Views 59 59 59
PDF Downloads 76 76 76

The Impacts of Cloud-Radiative Changes on Poleward Atmospheric and Oceanic Energy Transport in a Warmer Climate

View More View Less
  • 1 a Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 2 b Department of Physics, Imperial College London, Grantham Institute, London, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Based on theory and climate model experiments, previous studies suggested that most of the uncertainties in projected future changes in meridional energy transport and zonal mean surface temperature can be attributed to cloud feedback. To investigate how radiative and dynamical adjustments modify the influence of cloud-radiative changes on energy transport, this study applies a cloud-locking technique in a fully coupled climate model, CESM. Under global warming, the impacts of cloud-radiative changes on the meridional energy transport are asymmetric in the two hemispheres. In the Northern Hemisphere, the cloud-radiative changes have little impact on energy transport because 89% of the cloud-induced heating is balanced locally by increasing outgoing longwave radiation. In the Southern Hemisphere, on the other hand, cloud-induced dynamical changes in the atmosphere and the ocean cause enhanced poleward energy transport, accounting for most of the increase in energy transport under warming. Our experiments highlight that the local longwave radiation adjustment induced by temperature variation can partially offset the impacts of cloud-radiative changes on energy transport, making the estimated impacts smaller than those obtained from directly integrating cloud-radiative changes in previous studies. It is also demonstrated that the cloud-radiative impacts on temperature and energy transport can be significantly modulated by the oceanic circulation, suggesting the necessity of considering atmospheric–oceanic coupling when estimating the impacts of cloud-radiative changes on the climate system.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yen-Ting Hwang, ythwang@ntu.edu.tw

Abstract

Based on theory and climate model experiments, previous studies suggested that most of the uncertainties in projected future changes in meridional energy transport and zonal mean surface temperature can be attributed to cloud feedback. To investigate how radiative and dynamical adjustments modify the influence of cloud-radiative changes on energy transport, this study applies a cloud-locking technique in a fully coupled climate model, CESM. Under global warming, the impacts of cloud-radiative changes on the meridional energy transport are asymmetric in the two hemispheres. In the Northern Hemisphere, the cloud-radiative changes have little impact on energy transport because 89% of the cloud-induced heating is balanced locally by increasing outgoing longwave radiation. In the Southern Hemisphere, on the other hand, cloud-induced dynamical changes in the atmosphere and the ocean cause enhanced poleward energy transport, accounting for most of the increase in energy transport under warming. Our experiments highlight that the local longwave radiation adjustment induced by temperature variation can partially offset the impacts of cloud-radiative changes on energy transport, making the estimated impacts smaller than those obtained from directly integrating cloud-radiative changes in previous studies. It is also demonstrated that the cloud-radiative impacts on temperature and energy transport can be significantly modulated by the oceanic circulation, suggesting the necessity of considering atmospheric–oceanic coupling when estimating the impacts of cloud-radiative changes on the climate system.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yen-Ting Hwang, ythwang@ntu.edu.tw
Save