• Agel, L., M. Barlow, S. B. Feldstein, and W. J. Gutowski Jr., 2018: Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Climate Dyn., 50, 18191839, https://doi.org/10.1007/s00382-017-3724-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anandhi, A., V. V. Srinivas, R. S. Nanjundiah, and D. Nagesh Kumar, 2008: Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Int. J. Climatol., 28, 401420, https://doi.org/10.1002/joc.1529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., and et al. , 2019: North American extreme precipitation events and related large-scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 53, 68356875, https://doi.org/10.1007/s00382-019-04958-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boluwade, A., T. Stadnyk, V. Fortin, and G. Roy, 2017: Assimilation of precipitation Estimates from the Integrated Multisatellite Retrievals for GPM (IMERG, Early Run) in the Canadian Precipitation Analysis (CaPA). J. Hydrol. Reg. Stud., 14, 1022, https://doi.org/10.1016/j.ejrh.2017.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2013: Regional climate and variability of NASA MERRA and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteor. Climatol., 52, 19391951, https://doi.org/10.1175/JAMC-D-12-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., R. Lucchesi, and M. Suarez, 2016: MERRA-2: File specification. GMAO Office Note 9 (version 1.1), 73 pp., http://gmao.gsfc.nasa.gov/pubs/office_notes.

  • Buda, M., A. Maki, and M. A. Mazurowski, 2018: A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks, 106, 249259, https://doi.org/10.1016/j.neunet.2018.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, W., J. Yuan, Z. He, Z. Zhang, and Z. He, 2018: Fast deep neural networks with knowledge guided training and predicted regions of interests for real-time video object detection. IEEE Access, 6, 89908999, https://doi.org/10.1109/ACCESS.2018.2795798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casola, J. H., and J. M. Wallace, 2007: Identifying weather regimes in the wintertime 500-hPa geopotential height field for the Pacific–North American sector using a limited-contour clustering technique. J. Appl. Meteor., 46, 16191630, https://doi.org/10.1175/JAM2564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, A., P. Hassanzadeh, and S. Pasha, 2020: Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data. Sci. Rep., 10, 1317, https://doi.org/10.1038/s41598-020-57897-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., and T. Knutson, 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 16051621, https://doi.org/10.1175/2007JCLI1494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Y. Gao, Y. Liu, M. Wigmosta, and M. Richmond, 2018: Predictability of extreme precipitation in western U.S. watersheds based on atmospheric river occurrence, intensity, and duration. Geophys. Res. Lett., 45, 11 69311 701, https://doi.org/10.1029/2018GL079831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., T. R. Carter, M. Rummukainen, and G. Amanatidis, 2007: Evaluating the performance and utility of regional climate models: The PRUDENCE project. Climatic Change, 81, 16, https://doi.org/10.1007/s10584-006-9211-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A. M., A. J. Broccoli, and S. G. Decker, 2013: A comparison of CMIP3 simulations of precipitation over North America with observations: Daily statistics and circulation features accompanying extreme events. J. Climate, 26, 32093230, https://doi.org/10.1175/JCLI-D-12-00374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. L. Kinter III, 2010: Floods over the U.S. Midwest: A regional water cycle perspective. J. Hydrometeor., 11, 11721181, https://doi.org/10.1175/2010JHM1196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farnham, D. J., J. Doss-Gollin, and U. Lall, 2018: Regional extreme precipitation events: Robust inference from credibly simulated GCM variables. Water Resour. Res., 54, 38093824, https://doi.org/10.1002/2017WR021318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., and D. B. Stephenson, 2011: Extremal dependence indices: Improved verification measures for deterministic forecasts of rare binary events. Wea. Forecasting, 26, 699713, https://doi.org/10.1175/WAF-D-10-05030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., and C. A. Schlosser, 2019: Mid-western US heavy summer-precipitation in regional and global climate models: The impact on model skill and consensus through an analogue lens. Climate Dyn., 52, 15691582, https://doi.org/10.1007/s00382-018-4209-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X. and S. Mathur, 2021: Predictability of U.S. regional extreme precipitation occurrence based on large-scale meteorological patterns (LSMPs). MIT Joint Program Rep. 353, 20 pp., https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt353.pdf.

    • Crossref
    • Export Citation
  • Gao, X., C. A. Schlosser, P. Xie, E. Monier, and D. Entekhabi, 2014: An analogue approach to identify heavy precipitation events: Evaluation and application to CMIP5 climate models in the United States. J. Climate, 27, 59415963, https://doi.org/10.1175/JCLI-D-13-00598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., C. A. Schlosser, P. A. O’Gorman, E. Monier, and D. Entekhabi, 2017: Twenty-first-century changes in U.S. regional heavy precipitation frequency based on resolved atmospheric patterns. J. Climate, 30, 25012521, https://doi.org/10.1175/JCLI-D-16-0544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015GL065435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and et al. , 2019: Precipitation regime change in western North America: The role of atmospheric rivers. Sci. Rep., 9, 9944, https://doi.org/10.1038/s41598-019-46169-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2006: Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa. Int. J. Climatol., 26, 13151337, https://doi.org/10.1002/joc.1314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000: Improved United States Precipitation Quality Control System and Analysis. NCEP/Climate Prediction Center Atlas No. 7, http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/index.html.

  • Higgins, R. W., V. Silva, W. Shi, and J. Larson, 2007: Relationships between climate variability and fluctuations in daily precipitation over the United States. J. Climate, 20, 35613579, https://doi.org/10.1175/JCLI4196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schar, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 17831794, https://doi.org/10.1175/BAMS-88-11-1783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hope, P. K., 2006: Projected future changes in synoptic systems influencing southwest Western Australia. Climate Dyn., 26, 765780, https://doi.org/10.1007/s00382-006-0116-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and J. R. Angel, 1992: Rainfall Frequency Atlas of the Midwest. Illinois State Water Survey, Champaign, Bulletin 71, 141 pp.

    • Search Google Scholar
    • Export Citation
  • Japkowicz, N., and S. Stephen, 2002: The class imbalance problem: A systematic study. Intell. Data Anal., 6, 429449, https://doi.org/10.3233/IDA-2002-6504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewson, S., 2020: An alternative to PCA for estimating dominant patterns of climate variability and extremes, with application to U.S. and China seasonal rainfall. Atmosphere, 11, 354, https://doi.org/10.3390/atmos11040354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawazoe, S., and W. J. Gutowski, 2013: Regional, very heavy daily precipitation in CMIP5 simulations. J. Hydrometeor., 14, 12281242, https://doi.org/10.1175/JHM-D-12-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knighton, J., G. Pleiss, E. Carter, S. Lyon, M. T. Walter, and S. Steinschneider, 2019: Potential predictability of regional precipitation and discharge extremes using synoptic-scale climate information via machine learning: An evaluation for the eastern continental United States. J. Hydrometeor., 20, 883900, https://doi.org/10.1175/JHM-D-18-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 70207028, https://doi.org/10.1002/2017GL074193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lennard, C., and G. Hegerl, 2015: Relating changes in synoptic circulation to the surface rainfall response using self-organising maps. Climate Dyn., 44, 861879, https://doi.org/10.1007/s00382-014-2169-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and B. Wang, 2018: Predictability of summer extreme precipitation days over eastern China. Climate Dyn., 51, 45434554, https://doi.org/10.1007/s00382-017-3848-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and et al. , 2016: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. 8 pp., https://arxiv.org/abs/1605.01156.

  • Loikith, P. C., B. R. Lintner, and A. Sweeney, 2017: Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the northwestern United States using self-organizing maps. J. Climate, 30, 28292847, https://doi.org/10.1175/JCLI-D-16-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M., U. Lall, J. Kawale, S. Liess, and V. Kumar, 2016: Exploring the predictability of 30-day extreme precipitation occurrence using a global SST–SLP correlation network. J. Climate, 29, 10131029, https://doi.org/10.1175/JCLI-D-14-00452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazurowski, M. A., P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker, and G. D. Tourassi, 2008: Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural Networks, 21, 427436, https://doi.org/10.1016/j.neunet.2007.12.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., E. H. Atallah, J. R. Gyakum, and G. Dookhie, 2014: Synoptic typing and precursors of heavy warm-season precipitation events at Montreal, Quebec. Wea. Forecasting, 29, 419444, https://doi.org/10.1175/WAF-D-13-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S. K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, J., U. Lall, Y. Kushnir, A. W. Robertson, and R. Seager, 2013: Dynamical structure of extreme floods in the U.S. Midwest and the United Kingdom. J. Hydrometeor., 14, 485504, https://doi.org/10.1175/JHM-D-12-059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, R., M. Trueman, M. Mittermaier, and M. J. Rodwell, 2013: An assessment of the SEEPS and SEDI metrics for the verification of 6 h forecast precipitation accumulations. Meteor. Appl., 20, 164175, https://doi.org/10.1002/met.1405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Racah, E., C. Beckham, T. Mahranj, and S. E. Kahou, Prabhat, and C. Pal, 2017: ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, NIPS, 3405–3416, https://arxiv.org/abs/1612.02095.

  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., Q. Liu, R. Koster, C. Draper, S. Mahanama, and G. Partyka, 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, https://doi.org/10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2005: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, https://doi.org/10.1080/789610199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachindra, D. A., F. Huang, A. Barton, and B. J. C. Perera, 2014: Statistical downscaling of general circulation model outputs to catchment scale hydroclimatic variables: Issues, challenges and possible solutions. J. Water Climate Change, 5, 496525, https://doi.org/10.2166/wcc.2014.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlef, K. E., H. Moradkhani, and U. Lall, 2019: Atmospheric circulation patterns associated with extreme United States floods identified via machine learning. Sci. Rep., 9, 7171, https://doi.org/10.1038/s41598-019-43496-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and C. A. Davis, 2010: Ensemble-based forecast uncertainty analysis of diverse heavy rainfall events. Wea. Forecasting, 25, 11031122, https://doi.org/10.1175/2010WAF2222378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res., 118, 24732493, https://doi.org/10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukovich, E. M., F. M. Ralph, F. E. Barthold, D. W. Reynolds, and D. R. Novak, 2014: Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Wea. Forecasting, 29, 894911, https://doi.org/10.1175/WAF-D-13-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2014: On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: The example of Taiwan. Wea. Forecasting, 29, 788798, https://doi.org/10.1175/WAF-D-13-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., S. Guo, W. Huang, Y. Xiong, and Y. Qiao, 2017: Knowledge guided disambiguation for large-scale scene classification with multi-resolution CNNs. IEEE Trans. Image Process., 26, 20552068, https://doi.org/10.1109/TIP.2017.2675339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., 2013: Very extreme seasonal precipitation in the NARCCAP ensemble: Model performance and projections. Climate Dyn., 40, 5980, https://doi.org/10.1007/s00382-012-1393-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and et al. , 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J Model Earth Syst., 6, 980997, https://doi.org/10.1002/2013MS000276.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 317 317 56
Full Text Views 92 92 17
PDF Downloads 118 118 19

Predictability of U.S. Regional Extreme Precipitation Occurrence Based on Large-Scale Meteorological Patterns (LSMPs)

View More View Less
  • 1 a Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 b Department of Computer Science and Information Systems, Birla Institute of Technology and Science, Pilani, India
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In this study, we use analogue method and convolutional neural networks (CNNs) to assess the potential predictability of extreme precipitation occurrence based on large-scale meteorological patterns (LSMPs) for the winter (DJF) of “Pacific Coast California” region (PCCA) and the summer (JJA) of the midwestern United States (MWST). We evaluate the LSMPs constructed with a large set of variables at multiple atmospheric levels and quantify the prediction skill with a variety of complementary performance measures. Our results suggest that LSMPs provide useful predictability of daily extreme precipitation occurrence and its interannual variability over both regions. The 14-yr (2006–19) independent forecast shows Gilbert skill scores (GSS) in PCCA ranging from 0.06 to 0.32 across 24 CNN schemes and from 0.16 to 0.26 across four analogue schemes, in contrast from 0.1 to 0.24 and from 0.1 to 0.14 in MWST. Overall, CNN is shown to be more powerful in extracting the relevant features associated with extreme precipitation from the LSMPs than analogue method, with several single-variate CNN schemes achieving more skillful prediction than the best multivariate analogue scheme in PCCA and more than half of CNN schemes in MWST. Nevertheless, both methods highlight that the integrated vapor transport (IVT, or its zonal and meridional components) enables higher skills than other atmospheric variables over both regions. Warm-season extreme precipitation in MWST presents a forecast challenge with overall lower prediction skill than in PCCA, attributed to the weak synoptic-scale forcing in summer.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiang Gao, xgao304@mit.edu

Abstract

In this study, we use analogue method and convolutional neural networks (CNNs) to assess the potential predictability of extreme precipitation occurrence based on large-scale meteorological patterns (LSMPs) for the winter (DJF) of “Pacific Coast California” region (PCCA) and the summer (JJA) of the midwestern United States (MWST). We evaluate the LSMPs constructed with a large set of variables at multiple atmospheric levels and quantify the prediction skill with a variety of complementary performance measures. Our results suggest that LSMPs provide useful predictability of daily extreme precipitation occurrence and its interannual variability over both regions. The 14-yr (2006–19) independent forecast shows Gilbert skill scores (GSS) in PCCA ranging from 0.06 to 0.32 across 24 CNN schemes and from 0.16 to 0.26 across four analogue schemes, in contrast from 0.1 to 0.24 and from 0.1 to 0.14 in MWST. Overall, CNN is shown to be more powerful in extracting the relevant features associated with extreme precipitation from the LSMPs than analogue method, with several single-variate CNN schemes achieving more skillful prediction than the best multivariate analogue scheme in PCCA and more than half of CNN schemes in MWST. Nevertheless, both methods highlight that the integrated vapor transport (IVT, or its zonal and meridional components) enables higher skills than other atmospheric variables over both regions. Warm-season extreme precipitation in MWST presents a forecast challenge with overall lower prediction skill than in PCCA, attributed to the weak synoptic-scale forcing in summer.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiang Gao, xgao304@mit.edu
Save