• Alcamo, J., , Döll P. , , Henrichs T. , , Kaspar F. , , Lehner B. , , Rösch T. , , and Siebert S. , 2003: Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J., 48, 317337, doi:10.1623/hysj.48.3.317.45290.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., , Clark E. A. , , Wood A. W. , , Hamlet A. F. , , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, doi:10.1175/JHM450.1.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., 1999: A simple water balance model for the simulation of streamflow over a large geographic domain. J. Hydrol., 217, 314335, doi:10.1016/S0022-1694(99)00023-2.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., , Viterbo P. , , Beljaars A. , , van den Hurk B. , , Hirschi M. , , Betts A. K. , , and Scipal K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Bondeau, A., , Smith P. C. , , Zaehle S. , , Schaphoff S. , , Lucht W. , , Cramer W. , , and Gerten D. , 2007: Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol., 13, 679706, doi:10.1111/j.1365-2486.2006.01305.x.

    • Search Google Scholar
    • Export Citation
  • Chang, F., , Chen C. J. , , and Lu C. J. , 2004: A linear-time component-labeling algorithm using contour tracing technique. Comput. Vision Image Understanding, 93, 206220, doi:10.1016/j.cviu.2003.09.002.

    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., , and McMahon T. A. , 2002: Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol. Sci. J., 47, 505522, doi:10.1080/02626660209492950.

    • Search Google Scholar
    • Export Citation
  • Clark, D. B., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701722, doi:10.5194/gmd-4-701-2011.

    • Search Google Scholar
    • Export Citation
  • Corzo Perez, G. A., , van Huijgevoort M. H. J. , , Voß F. , , and van Lanen H. A. J. , 2011: On the spatio-temporal analysis of hydrological droughts from global hydrological models. Hydrol. Earth Syst. Sci., 15, 29632978, doi:10.5194/hess-15-2963-2011.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • de Rosnay, P., , and Polcher J. , 1998: Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol. Earth Syst. Sci., 2, 239255, doi:10.5194/hess-2-239-1998.

    • Search Google Scholar
    • Export Citation
  • Deni, S. M., , and Jemain A. A. , 2009: Mixed log series geometric distribution for sequences of dry days. Atmos. Res., 92, 236243, doi:10.1016/j.atmosres.2008.10.032.

    • Search Google Scholar
    • Export Citation
  • Fraser, E. D., , Simelton E. , , Termansen M. , , Gosling S. N. , , and South A. , 2013: “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agric. For. Meteor., 170, 195205, doi:10.1016/j.agrformet.2012.04.008.

    • Search Google Scholar
    • Export Citation
  • Gao, X., , and Dirmeyer P. A. , 2006: A multimodel analysis, validation, and transferability study of global soil wetness products. J. Hydrometeor., 7, 12181236, doi:10.1175/JHM551.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and Francisco R. , 2000: Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Climate Dyn., 16, 169182, doi:10.1007/PL00013733.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., , and Arnell N. W. , 2011: Simulating current global river runoff with a global hydrological model: Model revisions, validation, and sensitivity analysis. Hydrol. Processes, 25, 11291145, doi:10.1002/hyp.7727.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., , and Knight R. W. , 2008: Prolonged dry episodes over the conterminous United States: New tendencies emerging during the last 40 years. J. Climate, 21, 18501862, doi:10.1175/2007JCLI2013.1.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., and Coauthors, 2012a: Comparing large-scale hydrological model simulations to observed runoff percentiles in Europe. J. Hydrometeor., 13, 604620, doi:10.1175/JHM-D-11-083.1.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., , Wagener T. , , Tallaksen L. M. , , and Engeland K. , 2012b: Evaluation of nine large-scale hydrological models with respect to the seasonal runoff climatology in Europe. Water Resour. Res., 48, W11504, doi:10.1029/2011WR010911.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., , Dirmeyer P. A. , , Gao X. , , and Zhao M. , 2007: Improving the quality of simulated soil moisture with a multi-model ensemble approach. Quart. J. Roy. Meteor. Soc., 133, 731747, doi:10.1002/qj.48.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multi-model estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884, doi:10.1175/2011JHM1324.1.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., , and Dümenil L. , 1997: A parametrization of the lateral waterflow for the global scale. Climate Dyn., 14, 1731, doi:10.1007/s003820050205.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., , and Gates L. D. , 2003: Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Climate Dyn., 21, 349359, doi:10.1007/s00382-003-0349-x.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., , Kanae S. , , Oki T. , , Masuda K. , , Motoya K. , , Shirakawa N. , , Shen Y. , , and Tanaka K. , 2008: An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 10071025, doi:10.5194/hess-12-1007-2008.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., , Tibshirani R. , , and Friedman J. , 2001: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 533 pp.

  • He, L., , Chao Y. , , Suzuki K. , , and Wu K. , 2009: Fast connected-component labeling. Pattern Recognit., 42, 19771987, doi:10.1016/j.patcog.2008.10.013.

    • Search Google Scholar
    • Export Citation
  • Hisdal, H., , Tallaksen L. M. , , Clausen B. , , Peters E. , , and Gustard A. , 2004: Hydrological drought characteristics. Hydrological Drought Processes and Estimation Methods for Streamflow and Groundwater, L. M. Tallaksen and H. A. J. van Lanen, Eds., Developments in Water Science, Vol. 48, Elsevier Science, 139–198.

  • Koirala, S., 2010: Explicit representation of groundwater process in a global-scale land surface model to improve hydrological predictions. Ph.D. thesis, University of Tokyo, 208 pp.

  • Meigh, J. R., , McKenzie A. A. , , and Sene K. J. , 1999: A grid-based approach to water scarcity estimates for eastern and southern Africa. Water Resour. Manage., 13, 85115, doi:10.1023/A:1008025703712.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., , Parry S. , , Hannaford J. , , Clark D. B. , , Hagemann S. , , and Voss F. , 2011: How well do large-scale models reproduce regional hydrological extremes in Europe? J. Hydrometeor., 12, 11811204, doi:10.1175/2011JHM1387.1.

    • Search Google Scholar
    • Export Citation
  • Romm, J., 2011: The next dust bowl. Nature, 478, 450451, doi:10.1038/478450a.

  • Ropelewski, C. F., , and Halpert M. S. , 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, A., 1970: Connectivity in digital pictures. J. Assoc. Comput. Mach., 17, 146160, doi:10.1145/321556.321570.

  • Rost, S., , Gerten D. , , Bondeau A. , , Lucht W. , , Rohwer J. , , and Schaphoff S. , 2008: Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res., 44, W09405, doi:10.1029/2007WR006331.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , Fuchs T. , , Meyer-Christoffer A. , , and Rudolf B. , 2008: Global Precipitation Analysis Products of the GPCC. GPCC Rep., 13 pp. [Available online at ftp://ftp.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_v2011.pdf.]

  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Sheffield, J., , and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Andreadis K. M. , , Wood E. F. , , and Lettenmaier D. P. , 2009: Global and continental drought in the second half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events. J. Climate, 22, 19621981, doi:10.1175/2008JCLI2722.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. A., , and Sardeshmukh P. D. , 2000: The effect of ENSO on the intraseasonal variance of surface temperatures in winter. Int. J. Climatol., 20, 15431557, doi:10.1002/1097-0088(20001115)20:13<1543::AID-JOC579>3.0.CO;2-A.

    • Search Google Scholar
    • Export Citation
  • Stahl, K., 2001: Hydrological drought—A study across Europe. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg, 113 pp. [Available online at http://www.hydrology.uni-freiburg.de/publika/FSH-Bd15-Stahl.pdf.]

  • Stahl, K., , Tallaksen L. M. , , Hannaford J. , , and van Lanen H. A. J. , 2012: Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble. Hydrol. Earth Syst. Sci., 16, 20352047, doi:10.5194/hess-16-2035-2012.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , Horiba I. , , and Sugie N. , 2003: Linear-time connected-component labeling based on sequential local operations. Comput. Vision Image Understanding, 89, 123, doi:10.1016/S1077-3142(02)00030-9.

    • Search Google Scholar
    • Export Citation
  • Takata, K., , Emori S. , , and Watanabe T. , 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Tallaksen, L. M., , and van Lanen H. A. J. , Eds., 2004: Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater. Developments in Water Science, Vol. 48, Elsevier Science, 579 pp.

  • Tallaksen, L. M., , Hisdal H. , , and van Lanen H. A. J. , 2009: Space-time modelling of catchment scale drought characteristics. J. Hydrol., 375, 363372, doi:10.1016/j.jhydrol.2009.06.032.

    • Search Google Scholar
    • Export Citation
  • Tallaksen, L. M., , Stahl K. , , and Wong G. , 2011: Space-time characteristics of large-scale droughts in Europe derived from streamflow observations and WATCH multi-model simulations. WATCH Tech. Rep. 48, 16 pp. [Available online at http://www.eu-watch.org/publications/technical-reports.]

  • Teuling, A. J., , Stoeckli R. , , and Seneviratne S. I. , 2011: Bivariate colour maps for visualizing climate data. Int. J. Climatol., 31, 14081412, doi:10.1002/joc.2153.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van Huijgevoort, M. H. J., , Hazenberg P. , , van Lanen H. A. J. , , and Uijlenhoet R. , 2012: A generic method for hydrological drought identification across different climate regions. Hydrol. Earth Syst. Sci., 16, 24372451, doi:10.5194/hess-16-2437-2012.

    • Search Google Scholar
    • Export Citation
  • Van Loon, A. F., , and van Lanen H. A. J. , 2012: A process-based typology of hydrological drought. Hydrol. Earth Syst. Sci., 16, 19151946, doi:10.5194/hess-16-1915-2012.

    • Search Google Scholar
    • Export Citation
  • van Loon, A. F., , van Huijgevoort M. H. J. , , and van Lanen H. A. J. , 2012: Evaluation of drought propagation in an ensemble mean of large-scale hydrological models. Hydrol. Earth Syst. Sci., 16, 40574078, doi:10.5194/hess-16-4057-2012.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., , Lopez-Moreno J. I. , , Gimeno L. , , Nieto R. , , Moran-Tejeda E. , , Lorenzo-Lacruz J. , , Begueria S. , , and Azorin-Molina C. , 2011: A multiscalar global evaluation of the impact of ENSO on droughts. J. Geophys. Res., 116, D20109, doi:10.1029/2011JD016039.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., , and Mekis E. , 2006: Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos.–Ocean, 44, 177193, doi:10.3137/ao.440205.

    • Search Google Scholar
    • Export Citation
  • Wagenknecht, G., 2007: A contour tracing and coding algorithm for generating 2D contour codes from 3D classified objects. Pattern Recognit., 40, 12941306, doi:10.1016/j.patcog.2006.09.003.

    • Search Google Scholar
    • Export Citation
  • Wang, A., , Bohn T. J. , , Mahanama S. P. , , Koster R. D. , , and Lettenmaier D. P. , 2009: Multimodel ensemble reconstruction of drought over the continental United States. J. Climate, 22, 26942712, doi:10.1175/2008JCLI2586.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., , Lettenmaier D. P. , , and Sheffield J. , 2011: Soil moisture drought in China, 1950–2006. J. Climate, 24, 32573271, doi:10.1175/2011JCLI3733.1.

    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., and Coauthors, 2011: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823848, doi:10.1175/2011JHM1369.1.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D., Ed., 2000: Drought: A Global Assessment. Routledge, 752 pp.

  • Wolter, K., , and Timlin M. S. , 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, doi:10.1002/joc.2336.

    • Search Google Scholar
    • Export Citation
  • Wu, K., , Otoo E. , , and Suzuki K. , 2009: Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl., 12, 117135, doi:10.1007/s10044-008-0109-y.

    • Search Google Scholar
    • Export Citation
  • Yevjevich, V., 1967: An objective approach to definition and investigations of continental hydrologic droughts. Hydrology Paper 23, Colorado State University, Fort Collins, CO, 19 pp.

  • Zaidman, M. D., , and Rees H. G. , 2000: Spatial patterns of streamflow drought in Western Europe 1960–1995. ARIDE Tech. Rep. 8, Centre for Ecology and Hydrology, Wallingford, UK, 57 pp. [Available online at http://www.hydrology.uni-freiburg.de/forsch/aride/navigation/publications/pdfs/aride-techrep8.pdf.]

  • Zaidman, M. D., , Rees H. G. , , and Young A. R. , 2002: Spatio-temporal development of streamflow droughts in north-west Europe. Hydrol. Earth Syst. Sci., 6 , 733751, doi:10.5194/hess-6-733-2002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 100 100 10
Full Text Views 7 7 1
PDF Downloads 7 7 1

Global Multimodel Analysis of Drought in Runoff for the Second Half of the Twentieth Century

View More View Less
  • 1 * Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, Netherlands
  • | 2 Centre for Ecology and Hydrology, Wallingford, United Kingdom
  • | 3 School of Geography, University of Nottingham, Nottingham, United Kingdom
  • | 4 National Institute for Environmental Studies, Tsukuba, Japan
  • | 5 ** Potsdam Institute for Climate Impact Research, Potsdam, Germany, and International Livestock Research Institute, Nairobi, Kenya
  • | 6 Institute of Engineering Innovation, University of Tokyo, Tokyo, Japan
  • | 7 Terrestrial Hydrology Group, Max Planck Institute for Meteorology, Hamburg, Germany
  • | 8 Center for Environmental Systems Research, University of Kassel, Kassel, Germany
  • | 9 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

During the past decades large-scale models have been developed to simulate global and continental terrestrial water cycles. It is an open question whether these models are suitable to capture hydrological drought, in terms of runoff, on a global scale. A multimodel ensemble analysis was carried out to evaluate if 10 such large-scale models agree on major drought events during the second half of the twentieth century. Time series of monthly precipitation, monthly total runoff from 10 global hydrological models, and their ensemble median have been used to identify drought. Temporal development of area in drought for various regions across the globe was investigated. Model spread was largest in regions with low runoff and smallest in regions with high runoff. In vast regions, correlation between runoff drought derived from the models and meteorological drought was found to be low. This indicated that models add information to the signal derived from precipitation and that runoff drought cannot directly be determined from precipitation data alone in global drought analyses with a constant aggregation period. However, duration and spatial extent of major drought events differed between models. Some models showed a fast runoff response to rainfall, which led to deviations from reported drought events in slowly responding hydrological systems. By using an ensemble of models, this fast runoff response was partly overcome and delay in drought propagating from meteorological drought to drought in runoff was included. Finally, an ensemble of models also allows for consideration of uncertainty associated with individual model structures.

Denotes Open Access content.

Current affiliation: Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona.

Corresponding author address: Marjolein van Huijgevoort, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, Netherlands. E-mail: marjolein.vanhuijgevoort@wur.nl

Abstract

During the past decades large-scale models have been developed to simulate global and continental terrestrial water cycles. It is an open question whether these models are suitable to capture hydrological drought, in terms of runoff, on a global scale. A multimodel ensemble analysis was carried out to evaluate if 10 such large-scale models agree on major drought events during the second half of the twentieth century. Time series of monthly precipitation, monthly total runoff from 10 global hydrological models, and their ensemble median have been used to identify drought. Temporal development of area in drought for various regions across the globe was investigated. Model spread was largest in regions with low runoff and smallest in regions with high runoff. In vast regions, correlation between runoff drought derived from the models and meteorological drought was found to be low. This indicated that models add information to the signal derived from precipitation and that runoff drought cannot directly be determined from precipitation data alone in global drought analyses with a constant aggregation period. However, duration and spatial extent of major drought events differed between models. Some models showed a fast runoff response to rainfall, which led to deviations from reported drought events in slowly responding hydrological systems. By using an ensemble of models, this fast runoff response was partly overcome and delay in drought propagating from meteorological drought to drought in runoff was included. Finally, an ensemble of models also allows for consideration of uncertainty associated with individual model structures.

Denotes Open Access content.

Current affiliation: Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona.

Corresponding author address: Marjolein van Huijgevoort, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, Netherlands. E-mail: marjolein.vanhuijgevoort@wur.nl
Save