• Albergel, C., , de Rosnay P. , , Gruhier C. , , Muñoz-Sabater J. , , Hasenauer S. , , Isaksen L. , , Kerr Y. , , and Wagner W. , 2012: Evaluation of remotely sensed and modeled soil moisture products using global ground-based in situ observations. Remote Sens. Environ., 118, 215226, doi:10.1016/j.rse.2011.11.017.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., , Clark E. A. , , Wood A. W. , , Hamlet A. F. , , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, doi:10.1175/JHM450.1.

    • Search Google Scholar
    • Export Citation
  • Cosh, M., , Ochsner T. , , Basara J. , , and Jackson T. , 2010: The SMAP in situ soil moisture sensor testbed: Comparing in situ sensors for satellite validation. Proc. 2010 IEEE Int. Geoscience and Remote Sensing Symposium, Honolulu, HI, IEEE, 699–701, doi:10.1109/IGARSS.2010.5652389.

  • Dekker, S. C., , Rietkerk M. , , and Bierkens M. F. P. , 2007: Coupling microscale vegetation–soil water and macroscale vegetation–precipitation feedbacks in semiarid ecosystems. Global Change Biol., 13, 671678, doi:10.1111/j.1365-2486.2007.01327.x.

    • Search Google Scholar
    • Export Citation
  • Fensholt, R., , Sandholt I. , , and Rasmussen M. S. , 2004: Evaluation of MODIS LAI, FAPAR and the relation between FAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ., 91, 490507, doi:10.1016/j.rse.2004.04.009.

    • Search Google Scholar
    • Export Citation
  • Ghilain, N., , Arboleda A. , , Sepulcre-Cantò G. , , Batelaan O. , , Ardö J. , , and Gellens-Meulenberghs F. , 2012: Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite. Hydrol. Earth Syst. Sci., 16, 25672583, doi:10.5194/hess-16-2567-2012.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2005: Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture. Adv. Water Resour., 28, 13361350, doi:10.1016/j.advwatres.2005.03.013.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., , Basara J. B. , , and Crawford K. C. , 2004: Seasonal to interannual variations of soil moisture measured in Oklahoma. Int. J. Climatol., 24, 18831896, doi:10.1002/joc.1077.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., , Basara J. B. , , Fiebrich C. A. , , Crawford K. C. , , Hunt E. , , Fisher D. K. , , Elliott R. , , and Humes K. , 2008: Mesoscale monitoring of soil moisture across a statewide network. J. Atmos. Oceanic Technol., 25, 167182, doi:10.1175/2007JTECHA993.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , Niu G. Y. , , and Yang Z. L. , 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. J. Geophys. Res., 114, D06109, doi:10.1029/2008JD010756.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., , and McCabe G. J. Jr., 1999: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35, 233241, doi:10.1029/1998WR900018.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. P. , , Wood E. , , and Burges S. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and Coauthors, 2003: Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains. J. Geophys. Res., 108, 8843, doi:10.1029/2002JD003246.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., , and Hubbard K. G. , 2003: Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses. J. Hydrol., 280, 7290, doi:10.1016/S0022-1694(03)00183-5.

    • Search Google Scholar
    • Export Citation
  • Maurer, E., , Wood A. , , Adam J. , , Lettenmaier D. , , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., 2007: A review of vegetation–atmosphere interactions and their influences on mesoscale phenomena. Prog. Phys. Geogr., 31, 261, doi:10.1177/0309133307079055.

    • Search Google Scholar
    • Export Citation
  • Meng, L., , and Quiring S. M. , 2008: A comparison of soil moisture models using Soil Climate Analysis Network observations. J. Hydrometeor., 9, 641659, doi:10.1175/2008JHM916.1.

    • Search Google Scholar
    • Export Citation
  • Meng, L., , and Quiring S. M. , 2010: Examining the influence of spring soil moisture anomalies on summer precipitation in the U.S. Great Plains using the Community Atmosphere Model version 3. J. Geophys. Res., 115, D21118, doi:10.1029/2010JD014449.

    • Search Google Scholar
    • Export Citation
  • Owe, M., , de Jeu R. , , and Holmes T. , 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., 2009: Developing objective operational definitions for monitoring drought. J. Appl. Meteor. Climatol., 48, 12171229, doi:10.1175/2009JAMC2088.1.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108, 8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Senay, G. B., , and Elliott R. L. , 2000: Combining AVHRR-NDVI and landuse data to describe temporal and spatial dynamics of vegetation. For. Ecol. Manage., 128, 8391, doi:10.1016/S0378-1127(99)00275-3.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Goteti G. , , Wen F. , , and Wood E. F. , 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109, D24108, doi:10.1029/2004JD005182.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190.

  • Tang, Q., , Vivoni E. R. , , Muñoz-Arriola F. , , and Lettenmaier D. P. , 2012: Predictability of evapotranspiration patterns using remotely sensed vegetation dynamics during the North American monsoon. J. Hydrometeor., 13, 103121, doi:10.1175/JHM-D-11-032.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., , Bohn T. J. , , Mahanama S. P. , , Koster R. D. , , and Lettenmaier D. P. , 2009: Multimodel ensemble reconstruction of drought over the continental United States. J. Climate, 22, 26942712, doi:10.1175/2008JCLI2586.1.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , and Matsuura K. , 2005: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res., 30, 79–82, doi:10.3354/cr030079.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., 2008: The University of Washington Surface Water Monitor: An experimental platform for national hydrologic assessment and prediction. Preprints, 22nd Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., 5.2. [Available online at https://ams.confex.com/ams/pdfpapers/134844.pdf.]

  • Wu, W., , and Dickinson R. E. , 2004: Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J. Climate, 17, 27522764, doi:10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, W., , Geller M. A. , , and Dickinson R. E. , 2002: The response of soil moisture to long-term variability of precipitation. J. Hydrometeor., 3, 604613, doi:10.1175/1525-7541(2002)003<0604:TROSMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , and Wegehenkel M. , 2006: Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration. Remote Sens. Environ., 104, 393408, doi:10.1016/j.rse.2006.05.011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 0 0 0
PDF Downloads 0 0 0

Influence of MODIS-Derived Dynamic Vegetation on VIC-Simulated Soil Moisture in Oklahoma

View More View Less
  • 1 Department of Geography, Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

Soil moisture–vegetation interactions are an important component of land–atmosphere coupling, especially in semiarid regions such as the North American Great Plains. However, many land surface models parameterize vegetation using an interannually invariant leaf area index (LAI). This study quantifies how utilizing a dynamic vegetation parameter in the variability infiltration capacity (VIC) hydrologic model influences model-simulated soil moisture. Accuracy is assessed using in situ soil moisture observations from 20 stations from the Oklahoma Mesonet. Results show that VIC simulations generated with an interannually variant LAI parameter are not consistently more accurate than those generated with the invariant (static) LAI parameter. However, the static LAI parameter tends to overestimate LAI during anomalously dry periods. This has the greatest influence on the accuracy of the soil moisture simulations in the deeper soil layers. Soil moisture drought, as simulated with the static LAI parameter, tends to be more severe and persist for considerably longer than drought simulated using the interannually variant LAI parameter. Dynamic vegetation parameters can represent interannual variations in vegetation health and growing season length. Therefore, simulations with a dynamic LAI parameter better capture the intensity and duration of drought conditions and are recommended for use in drought monitoring.

Corresponding author address: Trent W. Ford, Department of Geography, Texas A&M University, 814 Eller O&M Bldg., MS 3147, College Station, TX 77843-3147. E-mail: twford@tamu.edu

Abstract

Soil moisture–vegetation interactions are an important component of land–atmosphere coupling, especially in semiarid regions such as the North American Great Plains. However, many land surface models parameterize vegetation using an interannually invariant leaf area index (LAI). This study quantifies how utilizing a dynamic vegetation parameter in the variability infiltration capacity (VIC) hydrologic model influences model-simulated soil moisture. Accuracy is assessed using in situ soil moisture observations from 20 stations from the Oklahoma Mesonet. Results show that VIC simulations generated with an interannually variant LAI parameter are not consistently more accurate than those generated with the invariant (static) LAI parameter. However, the static LAI parameter tends to overestimate LAI during anomalously dry periods. This has the greatest influence on the accuracy of the soil moisture simulations in the deeper soil layers. Soil moisture drought, as simulated with the static LAI parameter, tends to be more severe and persist for considerably longer than drought simulated using the interannually variant LAI parameter. Dynamic vegetation parameters can represent interannual variations in vegetation health and growing season length. Therefore, simulations with a dynamic LAI parameter better capture the intensity and duration of drought conditions and are recommended for use in drought monitoring.

Corresponding author address: Trent W. Ford, Department of Geography, Texas A&M University, 814 Eller O&M Bldg., MS 3147, College Station, TX 77843-3147. E-mail: twford@tamu.edu
Save