• Aonashi, K., and Coauthors, 2009: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, doi:10.2151/jmsj.87A.119.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events? J. Hydrol., doi:10.1016/j.jhydrol.2012.12.026, in press.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Connor S. J. , , and Ceccato P. , 2010: Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America. Satellite Rainfall Applications for Surface Hydrology, Springer, 193–204.

  • Farr, T. G., and Coauthors, 2007: The shuttle radar topography mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Ge, X., , Li T. , , Zhang S. , , and Peng M. , 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos. Sci. Lett., 11, 4650.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., , and Hossain F. , Eds., 2010: Satellite Rainfall Applications for Surface Hydrology. Springer, 327 pp.

  • Harris, A., , Rahman S. , , Hossain F. , , Yarborough L. , , Bagtzoglou A. C. , , and Easson G. , 2007: Satellite-based flood modeling using TRMM-based rainfall products. Sensors, 7, 34163427, doi:10.3390/s7123416.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Alder R. F. , , Negri A. , , and Huffman G. J. , 2007: Flood and landslide applications of near real-time satellite rainfall products. Nat. Hazards, 43, 285294, doi:10.1007/s11069-006-9106-x.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , Adler R. F. , , Bolvin D. T. , , Gu G. , , Nelkin E. J. , , Bowman K. P. , , Stocker E. F. , , and Wolff D. B. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multi-year, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , Kozu T. , , Kwiatkowski J. , , Meneghini R. , , Awaka J. , , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kachi, M., , Kubota T. , , Ushio T. , , Shige S. , , Kida S. , , Aonashi K. , , Okamoto K. , , and Oki R. , 2011: Development and utilization of “JAXA global rainfall watch” system based on combined microwave and infrared radiometers aboard satellites (in Japanese). IEEJ Trans. Fundam. Mater., 131, 729737, doi:10.1541/ieejfms.131.729.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39, 102116, doi:10.1109/36.898669.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., , Ushio T. , , Shige S. , , Kida S. , , Kachi M. , , and Okamoto K. , 2009: Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. J. Meteor. Soc. Japan, 87A, 203222, doi:10.2151/jmsj.87A.203.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Barnes W. , , Kozu T. , , Shiue J. , , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809816, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwon, E.-H., , Sohn B.-J. , , Chang D.-E. , , Ahn M.-H. , , and Yang S. , 2008: Use of numerical forecasts for improving TMI rain retrievals over the mountainous area in Korea. J. Appl. Meteor. Climatol., 47, 19952007, doi:10.1175/2007JAMC1857.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 1998: A fast and accurate model for microwave radiance calculations. J. Meteor. Soc. Japan, 76, 335343.

  • Masunaga, H., , Iguchi T. , , Oki R. , , and Kachi M. , 2002: Comparison of rainfall products derived from TRMM Microwave Imager and precipitation radar. J. Appl. Meteor., 41, 849862, doi:10.1175/1520-0450(2002)041<0849:CORPDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., , and Ferraro R. R. , 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., , and Adler R. F. , 1993: An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters. J. Appl. Meteor., 32, 357373, doi:10.1175/1520-0450(1993)032<0357:AIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., 2003: A short history of the TRMM precipitation radar. Cloud Systems, Hurricanes and the Tropical Rainfall Measurement Mission (TRMM): A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 187–195, doi:10.1175/0065-9401(2003)029<0187:CASHOT>2.0.CO;2.

  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Method and uncertainty estimates. J. Appl. Meteor. Climatol., 45, 702720, doi:10.1175/JAM2369.1.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Pedgley, D. E., 1970: Heavy rainfalls over Snowdonia. Weather, 25, 340350, doi:10.1002/j.1477-8696.1970.tb04117.x.

  • Sakakibara, H., 1981: Heavy rainfall from very shallow convective clouds. J. Meteor. Soc. Japan, 59, 387394.

  • Shige, S., and Coauthors, 2009: The GSMaP precipitation retrieval algorithm for microwave sounders. Part I: Over-ocean algorithm. IEEE Trans. Geosci. Remote Sens., 47, 30843097, doi:10.1109/TGRS.2009.2019954.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Kida S. , , Ashiwake H. , , Kubota T. , , and Aonashi K. , 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, doi:10.1175/JAMC-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., , Hsu K.-L. , , Gao X. , , Gupta H. V. , , Imam B. , , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , Goodman H. M. , , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 2006: Rain-yield per flash calculated from TRMM PR and LIS data and its relationship to the contribution of tall convective rain. Geophys. Res. Lett., 33, L18705, doi:10.1029/2006GL027531.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 2008: Observing rainfall regimes using TRMM PR and LIS data. GEWEX News, No. 18, International GEWEX Project Office, Silver Spring, MD, 9–10.

  • Takeda, T., , and Takase K. , 1980: Radar observation of rainfall system modified by orographic effects. J. Meteor. Soc. Japan, 58, 500516.

    • Search Google Scholar
    • Export Citation
  • Takeda, T., , Moriyama N. , , and Iwasaka Y. , 1976: A case study of heavy rain in Owase area. J. Meteor. Soc. Japan, 54, 3241.

  • Tao, W.-K., and Coauthors, 2011: High resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part I: Comparing the impact of microphysics and PBL parameterizations with observations. Terr. Atmos. Ocean. Sci., 22, 673696, doi:10.3319/TAO.2011.08.26.01(TM).

    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151, doi:10.2151/jmsj.87A.137.

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., , Davenport J. C. , , and Scofield R. A. , 2002: The role of orographic and parallax corrections on real-time high-resolution satellite rainfall rate distribution. Int. J. Remote Sens., 23, 221230, doi:10.1080/01431160010006935.

    • Search Google Scholar
    • Export Citation
  • Wang, N. Y., , Liu C. , , Ferraro R. , , Wolff D. , , Zipser E. , , and Kummerow C. , 2009: TRMM 2A12 land precipitation product-status and future plans. J. Meteor. Soc. Japan, 87A, 237253, doi:10.2151/jmsj.87A.237.

    • Search Google Scholar
    • Export Citation
  • Werner, M., 2001: Shuttle Radar Topography Mission (SRTM) mission overview. J. Telecommun. (Frequenz), 55, 7579.

  • Wu, C.-C., 2013: Typhoon Morakot: Key findings from the journal TAO for improving prediction of extreme rains at landfall. Bull. Amer. Meteor. Soc., 94, 155160, doi:10.1175/BAMS-D-11-00155.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., , and Yang M. J. , 2011: Preface to the special issue on “Typhoon Morakot (2009): Observation, modeling, and forecasting.” Terr. Atmos. Ocean. Sci., 22, doi:10.3319/TAO.2011.10.01.01(TM).

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 46 46 10
Full Text Views 7 7 0
PDF Downloads 6 6 0

Improvement of High-Resolution Satellite Rainfall Product for Typhoon Morakot (2009) over Taiwan

View More View Less
  • 1 Graduate School of Science, Kyoto University, Kyoto, Japan
  • | 2 Earth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, Japan
  • | 3 Department of Electrical, Electronic, and Information Engineering, Osaka University, Suita, Japan
  • | 4 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
© Get Permissions
Restricted access

Abstract

The authors improve the high-resolution Global Satellite Mapping of Precipitation (GSMaP) product for Typhoon Morakot (2009) over Taiwan by using an orographic/nonorographic rainfall classification scheme. For the estimation of the orographically forced upward motion used in the orographic/nonorographic rainfall classification scheme, the optimal horizontal length scale for averaging the elevation data is examined and found to be about 50 km. It is inferred that as the air ascends en masse on the horizontal scale, it becomes unstable and convection develops. The orographic/nonorographic rainfall classification scheme is extended to the GSMaP algorithm for all passive microwave radiometers in orbit, including not just microwave imagers but also microwave sounders. The retrieved rainfall rates, together with infrared images, are used for the high-resolution rainfall products, which leads to much better agreement with rain gauge observations.

Corresponding author address: Shoichi Shige, Graduate School of Science, Kyoto University, Kiashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan. E-mail: shige@kugi.kyoto-u.ac.jp

Abstract

The authors improve the high-resolution Global Satellite Mapping of Precipitation (GSMaP) product for Typhoon Morakot (2009) over Taiwan by using an orographic/nonorographic rainfall classification scheme. For the estimation of the orographically forced upward motion used in the orographic/nonorographic rainfall classification scheme, the optimal horizontal length scale for averaging the elevation data is examined and found to be about 50 km. It is inferred that as the air ascends en masse on the horizontal scale, it becomes unstable and convection develops. The orographic/nonorographic rainfall classification scheme is extended to the GSMaP algorithm for all passive microwave radiometers in orbit, including not just microwave imagers but also microwave sounders. The retrieved rainfall rates, together with infrared images, are used for the high-resolution rainfall products, which leads to much better agreement with rain gauge observations.

Corresponding author address: Shoichi Shige, Graduate School of Science, Kyoto University, Kiashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan. E-mail: shige@kugi.kyoto-u.ac.jp
Save