• Andrich, M. A., , and Imberger J. , 2013: The effect of land clearing on rainfall and fresh water resources in Western Australia: A multi-functional sustainability analysis. Int. J. Sustainable Dev. World Ecol., 20, 549563, doi:10.1080/13504509.2013.850752.

    • Search Google Scholar
    • Export Citation
  • Arraut, J. M., , Nobre C. , , Barbosa H. M. J. , , Obregon G. , , and Marengo J. , 2012: Aerial rivers and lakes: Looking at large-scale moisture transport and its relation to Amazonia and to subtropical rainfall in South America. J. Climate, 25, 543556, doi:10.1175/2011JCLI4189.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , Peters M. E. , , and Back L. E. , 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Calder, I. R., , Wright I. R. , , and Murdiyarso D. , 1986: A study of evaporation from tropical rain forest—West Java. J. Hydrol., 89, 1331, doi:10.1016/0022-1694(86)90139-3.

    • Search Google Scholar
    • Export Citation
  • Chikoore, H., , and Jury M. R. , 2010: Intraseasonal variability of satellite-derived rainfall and vegetation over Southern Africa. Earth Interact., 14, doi:10.1175/2010EI267.1.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , Seager R. , , and Miller R. L. , 2011: Atmospheric circulation anomalies during two persistent North American droughts: 1932–1939 and 1948–1957. Climate Dyn., 36, 23392355, doi:10.1007/s00382-010-0807-1.

    • Search Google Scholar
    • Export Citation
  • Degu, A., , Hossain F. , , Niyogi D. , , Pielke R. A. Sr., , Shepherd J. M. , , Voisin N. , , and Chronis T. , 2011: The influence of large dams on surrounding climate and precipitation patterns. Geophys. Res. Lett.,38, L04405, doi:10.1029/2010GL046482.

  • Dubreuil, V., , Debortoli N. , , Funatsu B. , , Nedelec V. , , and Durieux L. , 2012: Impact of land-cover change in the southern Amazonia climate: A case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ. Monit. Assess., 184, 877891, doi:10.1007/s10661-011-2006-x.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., and Coauthors, 2009: The land–atmosphere water flux in the tropics. Global Change Biol., 15, 26942714, doi:10.1111/j.1365-2486.2008.01813.x.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., , Strahler A. H. , , and Hodges J. , 2010: ISLSCP II MODIS (collection 4) IGBP land cover, 2000–2001. ISLSCP Initiative II Collection. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, digital media. [Available online at http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=968.]

  • Goessling, H. F., , and Reick C. H. , 2011: What do moisture recycling estimates tell us? Exploring the extreme case of non-evaporating continents. Hydrol. Earth Syst. Sci., 15, 32173235, doi:10.5194/hess-15-3217-2011.

    • Search Google Scholar
    • Export Citation
  • Gorshkov, V. G., , Makarieva A. M. , , and Nefiodov A. V. , 2012: Condensation of water vapor in the gravitational field. J. Exp. Theor. Phys., 115, 723728, doi:10.1134/S106377611209004X.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and Moncrieff M. W. , 2004: Moisture-convection feedback in the tropics. Quart. J. Roy. Meteor. Soc., 130, 30813104, doi:10.1256/qj.03.135.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , and Neelin J. D. , 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , and Neelin J. D. , 2010: Temporal relations of column water vapor and tropical precipitation. J. Atmos. Sci., 67, 10911105, doi:10.1175/2009JAS3284.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , Randall D. A. , , and Fowler L. D. , 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13, 41594179, doi:10.1175/1520-0442(2000)013<4159:DVOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., , and Gorshkov V. G. , 2007: Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci., 11, 10131033, doi:10.5194/hess-11-1013-2007.

    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., , and Gorshkov V. G. , 2010: The biotic pump: Condensation, atmospheric dynamics and climate. Int. J. Water, 5, 365385, doi:10.1504/IJW.2010.038729.

    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., , Gorshkov V. G. , , and Li B.-L. , 2009: Precipitation on land versus distance from the ocean: Evidence for a forest pump of atmospheric moisture. Ecol. Complexity, 6, 302307, doi:10.1016/j.ecocom.2008.11.004.

    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., , Gorshkov V. G. , , and Li B.-L. , 2013a: Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor. Appl. Climatol., 111, 7996, doi:10.1007/s00704-012-0643-9.

    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., , Gorshkov V. G. , , Nefiodov A. V. , , Sheil D. , , Nobre A. D. , , Bunyard P. , , and Li B.-L. , 2013b: The key physical parameters governing frictional dissipation in a precipitating atmosphere. J. Atmos. Sci, 70, 29162929, doi:10.1175/JAS-D-12-0231.1.

  • Makarieva, A. M., , Gorshkov V. G. , , Sheil D. , , Nobre A. D. , , and Li B.-L. , 2013c: Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos. Chem. Phys., 13, 10391056, doi:10.5194/acp-13-1039-2013.

    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., , Gorshkov V. G. , , and Nefiodov A. V. , 2014: Condensational power of air circulation in the presence of a horizontal temperature gradient. Phys. Lett. A, 378, 294298, doi:10.1016/j.physleta.2013.11.019.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

  • Marengo, J. A., 2005: Characteristics and spatio-temporal variability of the Amazon River basin water budget. Climate Dyn., 24, 1122, doi:10.1007/s00382-004-0461-6.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2006: On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Rev. Bras. Meteor., 21, 119.

    • Search Google Scholar
    • Export Citation
  • McGuffie, K., , and Henderson-Sellers A. , 2001: Forty years of numerical climate modelling. Int. J. Climatol., 21, 10671109, doi:10.1002/joc.632.

    • Search Google Scholar
    • Export Citation
  • Methven, J., 1997: Offline trajectories: Calculation and accuracy. Tech. Rep. 44, UK Universities' Global Atmospheric Modelling Programme, University of Reading, Reading, United Kingdom, 17 pp.

  • Millán, H., , Rodríguez J. , , Ghanbarian-Alavijeh B. , , Biondi R. , , and Llerena G. , 2011: Temporal complexity of daily precipitation records from different atmospheric environments: Chaotic and Lévy stable parameters. J. Atmos. Res., 101, 879892, doi:10.1016/j.atmosres.2011.05.021.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area index and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83, 214231, doi:10.1016/S0034-4257(02)00074-3.

    • Search Google Scholar
    • Export Citation
  • Nair, U. S., , Lawton R. O. , , Welch R. M. , , and Sr R. A. P. , 2003: Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. J. Geophys. Res., 108, 4206, doi:10.1029/2001JD001135.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2000: The nature of rainfall variability over Africa on time scales of decades to millenia. Global Planet. Change, 26, 137158, doi:10.1016/S0921-8181(00)00040-0.

    • Search Google Scholar
    • Export Citation
  • Polcher, K., , and Laval K. , 1994: The impact of African and Amazonian deforestation on tropical climate. J. Hydrol., 155, 389405, doi:10.1016/0022-1694(94)90179-1.

    • Search Google Scholar
    • Export Citation
  • Poveda, G., , Jaramillo L. , , and Vallejo L. F. , 2014: Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res., doi:10.1002/2013WR014087, in press.

    • Search Google Scholar
    • Export Citation
  • Ramos da Silva, R. R., , Gandu A. W. , , L. D. A. , , and Silva Dias M. A. F. , 2011: Cloud streets and land–water interactions in the Amazon. Biogeochemistry, 105, 201211, doi:10.1007/s10533-011-9580-4.

    • Search Google Scholar
    • Export Citation
  • Restrepo-Coupe, N., and Coauthors, 2013: What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. For. Meteor.,182–183, 128–144, doi:10.1016/j.agrformet.2013.04.031.

  • Salati, E., , and Nobre C. A. , 1991: Possible climatic impacts of tropical deforestation. Climatic Change, 19, 177196, doi:10.1007/BF00142225.

    • Search Google Scholar
    • Export Citation
  • Sharkov, E. A., , Shramkov Y. N. , , and Pokrovskaya I. V. , 2012: Increased water vapor content in the atmosphere of tropical latitudes as a necessary condition for the genesis of tropical cyclones. Izv., Atmos. Ocean. Phys., 48, 900908, doi:10.1134/S0001433812090162.

    • Search Google Scholar
    • Export Citation
  • Sheil, D., , and Murdiyarso D. , 2009: How forests attract their rain: An examination of a new hypothesis. Bioscience, 59, 341347, doi:10.1525/bio.2009.59.4.12.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., , Nobre C. , , and Sellers P. , 1990: Amazon deforestation and climate change. Science, 247, 13221325, doi:10.1126/science.247.4948.1322.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, P. L. S., , Bonatti J. P. , , and Kousky V. E. , 1987: Diurnally forced tropical tropospheric circulation over South America. Mon. Wea. Rev., 115, 14651478, doi:10.1175/1520-0493(1987)115<1465:DFTTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., , Arnold S. R. , , and Taylor C. M. , 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285, doi:10.1038/nature11390.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., , Savenije H. H. G. , , Schaefli B. , , and Steele-Dunne S. C. , 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res.,46, W09525, doi:10.1029/2010WR009127.

  • Williams, A. P., and Coauthors, 2012: Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Climate Dyn., 39, 23072328, doi:10.1007/s00382-011-1222-y.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and Smith E. A. , 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, doi:10.1175/JCLI3883.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., , and Lau K.-M. , 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201040, doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 414 414 35
Full Text Views 13 13 2
PDF Downloads 19 19 4

Why Does Air Passage over Forest Yield More Rain? Examining the Coupling between Rainfall, Pressure, and Atmospheric Moisture Content

View More View Less
  • 1 Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, Russia, and XIEG–UCR International Center for Arid Land Ecology, University of California, Riverside, Riverside, California
  • | 2 School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia, and Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Kabale, Uganda, and Center for International Forestry Research, Bogor, Indonesia, and Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
  • | 3 Centro de Ciência do Sistema Terrestre INPE, São José dos Campos, São Paulo, Brazil
  • | 4 University Sergio Arboleda, Bogota, Colombia
  • | 5 XIEG–UCR International Center for Arid Land Ecology, University of California, Riverside, Riverside, California
© Get Permissions
Restricted access

Abstract

The influence of forest loss on rainfall remains poorly understood. Addressing this challenge, Spracklen et al. recently presented a pantropical study of rainfall and land cover that showed that satellite-derived rainfall measures were positively correlated with the degree to which model-derived air trajectories had been exposed to forest cover. This result confirms the influence of vegetation on regional rainfall patterns suggested in previous studies. However, the conclusion of Spracklen et al.—that differences in rainfall reflect air moisture content resulting from evapotranspiration while the circulation pattern remains unchanged—appears undermined by methodological inconsistencies. Here methodological problems are identified with the underlying analyses and the quantitative estimates for rainfall change predicted if forest cover is lost in the Amazon. Alternative explanations are presented that include the distinct role of forest evapotranspiration in creating low-pressure systems that draw moisture from the oceans to the continental hinterland. A wholly new analysis of meteorological data from three regions in Brazil, including the central Amazon forest, reveals a tendency for rainy days during the wet season with column water vapor (CWV) exceeding 50 mm to have higher pressure than rainless days, while at lower CWV, rainy days tend to have lower pressure than rainless days. The coupling between atmospheric moisture content and circulation dynamics underlines that the danger posed by forest loss is greater than suggested by consideration of moisture recycling alone.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-12-0190.s1.

Corresponding author address: A. M. Makarieva, Theoretical Physics Division, Petersburg Nuclear Physics Institute, 188300 Gatchina, St. Petersburg, Russia. E-mail: ammakarieva@gmail.com

Abstract

The influence of forest loss on rainfall remains poorly understood. Addressing this challenge, Spracklen et al. recently presented a pantropical study of rainfall and land cover that showed that satellite-derived rainfall measures were positively correlated with the degree to which model-derived air trajectories had been exposed to forest cover. This result confirms the influence of vegetation on regional rainfall patterns suggested in previous studies. However, the conclusion of Spracklen et al.—that differences in rainfall reflect air moisture content resulting from evapotranspiration while the circulation pattern remains unchanged—appears undermined by methodological inconsistencies. Here methodological problems are identified with the underlying analyses and the quantitative estimates for rainfall change predicted if forest cover is lost in the Amazon. Alternative explanations are presented that include the distinct role of forest evapotranspiration in creating low-pressure systems that draw moisture from the oceans to the continental hinterland. A wholly new analysis of meteorological data from three regions in Brazil, including the central Amazon forest, reveals a tendency for rainy days during the wet season with column water vapor (CWV) exceeding 50 mm to have higher pressure than rainless days, while at lower CWV, rainy days tend to have lower pressure than rainless days. The coupling between atmospheric moisture content and circulation dynamics underlines that the danger posed by forest loss is greater than suggested by consideration of moisture recycling alone.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-12-0190.s1.

Corresponding author address: A. M. Makarieva, Theoretical Physics Division, Petersburg Nuclear Physics Institute, 188300 Gatchina, St. Petersburg, Russia. E-mail: ammakarieva@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 337.28 KB)
Save