• Ahmed, K. F., G. Wang, J. Silander, A. M. Wilson, J. M. Allen, R. Horton, and R. Anyah, 2013: Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast. Global Planet. Change, 100, 320332, https://doi.org/10.1016/j.gloplacha.2012.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andermann, C., S. Bonnet, and R. Gloaguen, 2011: Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst., 12, Q07023, https://doi.org/10.1029/2011GC003513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., and F. Brissette, 2014: Determining the optimal spatial distribution of weather station networks for hydrological modeling purposes using RCM datasets: An experimental approach. J. Hydrometeor., 15, 517526, https://doi.org/10.1175/JHM-D-13-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., A. Poulin, P. Côté, and F. Brissette, 2014: Comparison of stochastic optimization algorithms in hydrological model calibration. J. Hydrol. Eng., 19, 13741384, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., F. Brissette, and J.-L. Martel, 2018: The hazards of split-sample validation in hydrological model calibration. J. Hydrol., 566, 346362, https://doi.org/10.1016/j.jhydrol.2018.09.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., F. Brissette, J. Chen, Q. Guo, and G. Dallaire, 2020: NAC2H: The North-American climate change and hydroclimatology dataset. Water Resour. Res., 56, e2020WR027097, https://doi.org/10.1029/2020WR027097.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aslami, F., A. Ghorbani, B. Sobhani, and A. Esmali, 2019: Comprehensive comparison of daily IMERG and GSMaP satellite precipitation products in Ardabil Province, Iran. Int. J. Remote Sens., 40, 31393153, https://doi.org/10.1080/01431161.2018.1539274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asong, Z., S. Razavi, H. Wheater, and J. Wong, 2017: Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over southern Canada against ground precipitation observations: A preliminary assessment. J. Hydrometeor., 18, 10331050, https://doi.org/10.1175/JHM-D-16-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awange, J., V. Ferreira, E. Forootan, S. Andam-Akorful, N. Agutu, and X. He, 2016: Uncertainties in remotely sensed precipitation data over Africa. Int. J. Climatol., 36, 303323, https://doi.org/10.1002/joc.4346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. I. Van Dijk, V. Levizzani, J. Schellekens, D. Gonzalez Miralles, B. Martens, and A. De Roo, 2017a: MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21, 589615, https://doi.org/10.5194/hess-21-589-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and et al. , 2017b: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., B. Khakbaz, T. C. Jaw, A. AghaKouchak, K. Hsu, and S. Sorooshian, 2011: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 397, 225237, https://doi.org/10.1016/j.jhydrol.2010.11.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevelhimer, M. S., R. A. McManamay, and B. O’Connor, 2015: Characterizing sub-daily flow regimes: Implications of hydrologic resolution on ecohydrology studies. River Res. Appl., 31, 867879, https://doi.org/10.1002/rra.2781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, N., B. Bookhagen, J. Marengo, N. Marwan, J.-S. von Storch, and J. Kurths, 2015: Extreme rainfall of the South American monsoon system: A dataset comparison using complex networks. J. Climate, 28, 10311056, https://doi.org/10.1175/JCLI-D-14-00340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2013: Regional climate and variability of NASA MERRA and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteor. Climatol., 52, 19391951, https://doi.org/10.1175/JAMC-D-12-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. Silva, V. E. Kousky, R. Wayne Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and et al. , 2014: Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations. PLOS ONE, 9, e89681, https://doi.org/10.1371/JOURNAL.PONE.0089681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Qin, Y. Shen, and S. Zhang, 2016: Evaluation of global satellite mapping of precipitation project daily precipitation estimates over the Chinese mainland. Adv. Meteor., 2016, 9365294, http://doi.org/10.1155/2016/9365294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colston, J. M., and et al. , 2018: Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study. Environ. Res., 165, 91109, https://doi.org/10.1016/j.envres.2018.02.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Luzio, M., G. L. Johnson, C. Daly, J. K. Eischeid, and J. G. Arnold, 2008: Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteor. Climatol., 47, 475497, https://doi.org/10.1175/2007JAMC1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Z., J. Liu, Y. Tuo, G. Chiogna, and M. Disse, 2016: Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ., 573, 15361553, https://doi.org/10.1016/j.scitotenv.2016.08.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Z., Y. Tuo, J. Liu, H. Gao, X. Song, Z. Zhang, L. Yang, and D. F. Mekonnen, 2019: Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol., 569, 612626, https://doi.org/10.1016/j.jhydrol.2018.12.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essou, G. R., R. Arsenault, and F. P. Brissette, 2016: Comparison of climate datasets for lumped hydrological modeling over the continental United States. J. Hydrol., 537, 334345, https://doi.org/10.1016/j.jhydrol.2016.03.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and et al. , 2015: The climate hazards infrared precipitation with stations––A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getirana, A. C., J. Espinoza, J. Ronchail, and O. Rotunno Filho, 2011: Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin. J. Hydrol., 404, 304322, https://doi.org/10.1016/j.jhydrol.2011.04.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giardino, C., M. Bresciani, P. Villa, and A. Martinelli, 2010: Application of remote sensing in water resource management: The case study of lake Trasimeno, Italy. Water Resour. Manage., 24, 38853899, https://doi.org/10.1007/s11269-010-9639-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gubler, S., and et al. , 2017: The influence of station density on climate data homogenization. Int. J. Climatol., 37, 46704683, https://doi.org/10.1002/joc.5114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutenson, J. L., A. A. Tavakoly, M. D. Wahl, and M. L. Follum, 2020: Comparison of generalized non-data-driven reservoir routing models for global-scale hydrologic modeling. Hydrol. Earth Syst. Sci., 24, 27112729, https://doi.org/10.5194/hess-24-2711-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, N., S. D. Müller, and P. Koumoutsakos, 2003: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput., 11, 118, https://doi.org/10.1162/106365603321828970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hobeichi, S., G. Abramowitz, S. Contractor, and J. Evans, 2020a: Evaluating precipitation datasets using surface water and energy budget closure. J. Hydrometeor., 21, 9891009, https://doi.org/10.1175/JHM-D-19-0255.1.

    • Search Google Scholar
    • Export Citation
  • Hobeichi, S., G. Abramowitz, and J. Evans, 2020b: Conserving Land–Atmosphere Synthesis Suite (CLASS). J. Climate, 33, 18211844, https://doi.org/10.1175/JCLI-D-19-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofstra, N., M. New, and C. McSweeney, 2010: The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Climate Dyn., 35, 841858, https://doi.org/10.1007/s00382-009-0698-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Isotta, F. A., and et al. , 2014: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol., 34, 16571675, https://doi.org/10.1002/joc.3794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janis, M., K. Hubbard, and K. Redmond, 2002: Determining the optimal number of stations for the United States Climate Reference Network. Final Rep., Southeast Regional Climate Center, Researh Paper Series, 21 pp.

  • Janis, M. J., K. G. Hubbard, and K. T. Redmond, 2004: Station density strategy for monitoring long-term climatic change in the contiguous United States. J. Climate, 17, 151162, https://doi.org/10.1175/1520-0442(2004)017<0151:SDSFML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, S., L. Ren, Y. Hong, B. Yong, X. Yang, F. Yuan, and M. Ma, 2012: Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol., 452–453, 213225, https://doi.org/10.1016/j.jhydrol.2012.05.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jutla, A., H. Aldaach, H. Billian, A. Akanda, A. Huq, and R. Colwell, 2015: Satellite based assessment of hydroclimatic conditions related to cholera in Zimbabwe. PLoS One, 10, e0137828, https://doi.org/10.1371/journal.pone.0137828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S., and J.-B. Ahn, 2015: Global energy and water balances in the latest reanalyses. Asia-Pac. J. Atmos. Sci., 51, 293302, https://doi.org/10.1007/s13143-015-0079-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, S. I., and et al. , 2011: Hydroclimatology of Lake Victoria region using hydrologic model and satellite remote sensing data. Hydrol. Earth Syst. Sci., 15, 107117, https://doi.org/10.5194/hess-15-107-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., P. Bauer, J. Turk, G. Huffman, R. Joyce, K.-L. Hsu, and D. Braithwaite, 2012: Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor., 13, 6783, https://doi.org/10.1175/JHM-D-11-042.1.

    • Search Google Scholar
    • Export Citation
  • Kling, H., M. Fuchs, and M. Paulin, 2012: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol., 424-425, 264277, https://doi.org/10.1016/j.jhydrol.2012.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokkonen, T. S., and A. J. Jakeman, 2001: A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications. Water Resour. Res., 37, 23452352, https://doi.org/10.1029/2001WR000299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laviola, S., V. Levizzani, E. Cattani, and C. Kidd, 2013: The 183-WSL fast rain rate retrieval algorithm. Part II: Validation using ground radar measurements. Atmos. Res., 134, 7786, https://doi.org/10.1016/j.atmosres.2013.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res., 116, D19121, https://doi.org/10.1029/2011JD016187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lespinas, F., V. Fortin, G. Roy, P. Rasmussen, and T. Stadnyk, 2015: Performance evaluation of the Canadian Precipitation Analysis (CaPA). J. Hydrometeor., 16, 20452064, https://doi.org/10.1175/JHM-D-14-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lockhoff, M., O. Zolina, C. Simmer, and J. Schulz, 2014: Evaluation of satellite-retrieved extreme precipitation over Europe using gauge observations. J. Climate, 27, 607623, https://doi.org/10.1175/JCLI-D-13-00194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., H. Kunstmann, B. Devaraju, M. J. Tourian, N. Sneeuw, and J. Riegger, 2014: Large-scale runoff from landmasses: A global assessment of the closure of the hydrological and atmospheric water balances. J. Hydrometeor., 15, 21112139, https://doi.org/10.1175/JHM-D-13-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, D., and B. Yong, 2018: Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau. Remote Sens., 10, 2022, https://doi.org/10.3390/rs10122022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martel, J.-L., K. Demeester, F. P. Brissette, R. Arsenault, and A. Poulin, 2017: HMET: A simple and efficient hydrology model for teaching hydrological modelling, flow forecasting and climate change impacts. Int. J. Eng. Educ., 33, 13071316.

    • Search Google Scholar
    • Export Citation
  • Martel, J.-L., A. Mailhot, F. Brissette, and D. Caya, 2018: Role of natural climate variability in the detection of anthropogenic climate change signal for mean and extreme precipitation at local and regional scales. J. Climate, 31, 42414263, https://doi.org/10.1175/JCLI-D-17-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., P. Cabus, I. De Jongh, and N. Verhoest, 2013: Merging weather radar observations with ground-based measurements of rainfall using an adaptive multiquadric surface fitting algorithm. J. Hydrol., 500, 8496, https://doi.org/10.1016/j.jhydrol.2013.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazzoglio, P., F. Laio, S. Balbo, P. Boccardo, and F. Disabato, 2019: Improving an extreme rainfall detection system with GPM IMERG data. Remote Sens., 11, 677, https://doi.org/10.3390/rs11060677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munier, S., and F. Aires, 2018: A new global method of satellite dataset merging and quality characterization constrained by the terrestrial water budget. Remote Sens. Environ., 205, 119130, https://doi.org/10.1016/j.rse.2017.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models Part I––A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nashwan, M. S., S. Shahid, and X. Wang, 2019: Uncertainty in estimated trends using gridded rainfall data: A case study of Bangladesh. Water, 11, 349, https://doi.org/10.3390/w11020349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 2013, 453521, https://doi.org/10.1155/2013/453521.

    • Search Google Scholar
    • Export Citation
  • Nieto, H., I. Sandholt, I. Aguado, E. Chuvieco, and S. Stisen, 2011: Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula. Remote Sens. Environ., 115, 107116, https://doi.org/10.1016/j.rse.2010.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishat, B., and S. M. Rahman, 2009: Water resources modeling of the Ganges-Brahmaputra-Meghna river basins using satellite remote sensing data 1. J. Amer. Water Resour. Assoc., 45, 13131327, https://doi.org/10.1111/j.1752-1688.2009.00374.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okamoto, K., T. Ushio, T. Iguchi, N. Takahashi, and K. Iwanami, 2005: The Global Satellite Mapping of Precipitation (GSMaP) project. Proc. 2005 IEEE Int. Geoscience and Remote Sensing Symp., Seoul, South Korea, IEEE, 34143416, https://doi.org/10.1109/IGARSS.2005.1526575.

    • Crossref
    • Export Citation
  • Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil, and C. Loumagne, 2005: Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol., 303, 290306, https://doi.org/10.1016/j.jhydrol.2004.08.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pechlivanidis, I. G., and B. Arheimer, 2015: Large-scale hydrological modelling by using modified PUB recommendations: The India-HYPE case. Hydrol. Earth Syst. Sci., 19, 45594579, https://doi.org/10.5194/hess-19-4559-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poméon, T., D. Jackisch, and B. Diekkrüger, 2017: Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. J. Hydrol., 547, 222235, https://doi.org/10.1016/j.jhydrol.2017.01.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., R. Gairola, and A. Mitra, 2015a: Comparison of large-scale global land precipitation from multisatellite and reanalysis products with gauge-based GPCC data sets. Theor. Appl. Climatol., 121, 303317, https://doi.org/10.1007/s00704-014-1245-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., and et al. , 2015b: Seasonal intercomparison of observational rainfall datasets over India during the southwest monsoon season. Int. J. Climatol., 35, 23262338, https://doi.org/10.1002/joc.4129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., M. R. Kumar, S. Mathew, and R. Venkatesan, 2018: How accurate are satellite estimates of precipitation over the north Indian Ocean? Theor. Appl. Climatol., 134, 467475, https://doi.org/10.1007/s00704-017-2287-2.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and A. Gobiet, 2017: Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol., 37, 305327, https://doi.org/10.1002/joc.4706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romilly, T., and M. Gebremichael, 2011: Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci., 15, 15051514, http://doi.org/10.5194/hess-15-1505-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., C. R. Ferguson, T. J. Troy, E. F. Wood, and M. F. McCabe, 2009: Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36, L07403, https://doi.org/10.1029/2009GL037338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y., Z. Hong, Y. Pan, J. Yu, and L. Maguire, 2018: China’s 1 km merged gauge, radar and satellite experimental precipitation dataset. Remote Sens., 10, 264, https://doi.org/10.3390/rs10020264.

    • Search Google Scholar
    • Export Citation
  • Siddique-E-Akbor, A. H. M., F. Hossain, S. Sikder, C. K. Shum, S. Tseng, Y. Yi, F. J. Turk, and A. Limaye, 2014: Satellite precipitation data–driven hydrological modeling for water resources management in the Ganges, Brahmaputra, and Meghna basins. Earth Interact., 18, https://doi.org/10.1175/EI-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. A., and C. D. Kummerow, 2013: A comparison of in situ, reanalysis, and satellite water budgets over the upper Colorado River basin. J. Hydrometeor., 14, 888905, https://doi.org/10.1175/JHM-D-12-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, C., B. Huang, L. Ke, and Q. Ye, 2016: Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins. Global Planet. Change, 145, 2029, https://doi.org/10.1016/j.gloplacha.2016.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sylla, M., F. Giorgi, E. Coppola, and L. Mariotti, 2013: Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Climatol., 33, 18051817, https://doi.org/10.1002/joc.3551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and et al. , 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, https://doi.org/10.1016/j.atmosres.2011.10.021.

    • Search Google Scholar
    • Export Citation
  • Tarek, M., F. P. Brissette, and R. Arsenault, 2020: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modeling over North-America. Hydrol. Earth Syst. Sci., 24, 25272544, https://doi.org/10.5194/hess-24-2527-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and et al. , 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, https://doi.org/10.1029/2009JD011949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toté, C., D. Patricio, H. Boogaard, R. Van der Wijngaart, E. Tarnavsky, and C. Funk, 2015: Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens., 7, 17581776, https://doi.org/10.3390/rs70201758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vehviläinen, B., 1992: Snow cover models in operational watershed forecasting. Publications of the Water and Environment Research Institute 11, National Board of Waters and the Environment, 112 pp.

  • Vila, D. A., L. G. G. De Goncalves, D. L. Toll, and J. R. Rozante, 2009: Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrometeor., 10, 533543, https://doi.org/10.1175/2008JHM1048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, R., 2013: Quantifying the uncertainty of spatial precipitation analyses with radar-gauge observation ensembles. Scientific Rep. MeteoSwiss 95, 80 pp.

  • Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, 2014: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50, 75057514, https://doi.org/10.1002/2014WR015638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., Z. Xu, F. Wang, H. He, J. Zhou, X. Wu, and Z. Liu, 2018: Hydrologic evaluation of multi-source satellite precipitation products for the upper Huaihe River Basin, China. Remote Sens., 10, 840, https://doi.org/10.3390/rs10060840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, R., M. Ek, and J. Meng, 2015: Surface water and energy budgets for the Mississippi River basin in three NCEP reanalyses. J. Hydrometeor., 16, 857873, https://doi.org/10.1175/JHM-D-14-0056.1.

    • Search Google Scholar
    • Export Citation
  • Yong, B., D. Liu, J. J. Gourley, Y. Tian, G. J. Huffman, L. Ren, and Y. Hong, 2015: Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission. Bull. Amer. Meteor. Soc., 96, 283296, https://doi.org/10.1175/BAMS-D-14-00017.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., Y. Li, Y. Huang, Y. Li, C. Hou, and X. Shi, 2018: Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa River basin in Northeast China. Atmos. Res., 207, 2841, https://doi.org/10.1016/j.atmosres.2018.02.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 429 429 64
Full Text Views 56 56 3
PDF Downloads 69 69 6

Large-Scale Analysis of Global Gridded Precipitation and Temperature Datasets for Climate Change Impact Studies

View More View Less
  • 1 Hydrology, Climate and Climate Change Laboratory, École de Technologie Supérieure, Montreal, Quebec, Canada
  • | 2 Department of Civil Engineering, Military Technical College, Cairo, Egypt
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Currently, there are a large number of diverse climate datasets in existence, which differ, sometimes greatly, in terms of their data sources, quality control schemes, estimation procedures, and spatial and temporal resolutions. Choosing an appropriate dataset for a given application is therefore not a simple task. This study compares nine global/near-global precipitation datasets and three global temperature datasets over 3138 North American catchments. The chosen datasets all meet the minimum requirement of having at least 30 years of available data, so they could all potentially be used as reference datasets for climate change impact studies. The precipitation datasets include two gauged-only products (GPCC and CPC-Unified), two satellite products corrected using ground-based observations (CHIRPS V2.0 and PERSIANN-CDR V1R1), four reanalysis products (NCEP CFSR, JRA55, ERA-Interim, and ERA5), and one merged product (MSWEP V1.2). The temperature datasets include one gauge-based (CPC-Unified) and two reanalysis (ERA-Interim and ERA5) products. High-resolution gauge-based gridded precipitation and temperature datasets were combined as the reference dataset for this intercomparison study. To assess dataset performance, all combinations were used as inputs to a lumped hydrological model. The results showed that all temperature datasets performed similarly, albeit with the CPC performance being systematically inferior to that of the other three. Significant differences in performance were, however, observed between the precipitation datasets. The MSWEP dataset performed best, followed by the gauge-based, reanalysis, and satellite datasets categories. Results also showed that gauge-based datasets should be preferred in regions with good weather network density, but CHIRPS and ERA5 would be good alternatives in data-sparse regions.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mostafa Tarek, mostafa-tarek-gamaleldin.ibrahim.1@ens.etsmtl.ca

Abstract

Currently, there are a large number of diverse climate datasets in existence, which differ, sometimes greatly, in terms of their data sources, quality control schemes, estimation procedures, and spatial and temporal resolutions. Choosing an appropriate dataset for a given application is therefore not a simple task. This study compares nine global/near-global precipitation datasets and three global temperature datasets over 3138 North American catchments. The chosen datasets all meet the minimum requirement of having at least 30 years of available data, so they could all potentially be used as reference datasets for climate change impact studies. The precipitation datasets include two gauged-only products (GPCC and CPC-Unified), two satellite products corrected using ground-based observations (CHIRPS V2.0 and PERSIANN-CDR V1R1), four reanalysis products (NCEP CFSR, JRA55, ERA-Interim, and ERA5), and one merged product (MSWEP V1.2). The temperature datasets include one gauge-based (CPC-Unified) and two reanalysis (ERA-Interim and ERA5) products. High-resolution gauge-based gridded precipitation and temperature datasets were combined as the reference dataset for this intercomparison study. To assess dataset performance, all combinations were used as inputs to a lumped hydrological model. The results showed that all temperature datasets performed similarly, albeit with the CPC performance being systematically inferior to that of the other three. Significant differences in performance were, however, observed between the precipitation datasets. The MSWEP dataset performed best, followed by the gauge-based, reanalysis, and satellite datasets categories. Results also showed that gauge-based datasets should be preferred in regions with good weather network density, but CHIRPS and ERA5 would be good alternatives in data-sparse regions.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mostafa Tarek, mostafa-tarek-gamaleldin.ibrahim.1@ens.etsmtl.ca
Save