• Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33, 121131, https://doi.org/10.1002/joc.3413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., and T. J. Brown, 2012: A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol., 32, 772780, https://doi.org/10.1002/joc.2312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmadalipour, A., and H. Moradkhani, 2017: Analyzing the uncertainty of ensemble-based gridded observations in land surface simulations and drought assessment. J. Hydrol., 555, 557568, https://doi.org/10.1016/j.jhydrol.2017.10.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, K. F., G. Wang, J. Silander, M. A. Wilson, J. M. Allen, R. Horton, and R. Anyah, 2013: Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. Northeast. Global Planet. Change, 100, 320332, https://doi.org/10.1016/j.gloplacha.2012.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alder, J. R., and S. W. Hostetler, 2019: The dependence of hydroclimate projections in snow-dominated regions of the western United States on the choice of statistically downscaled climate data. Water Resour. Res., 55, 22792300, https://doi.org/10.1029/2018WR023458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badger, A. M., B. Livneh, M. P. Hoerling, and J. K. Eischeid, 2018: Understanding the 2011 Upper Missouri River Basin floods in the context of a changing climate. J. Hydrol., 19, 110123, https://doi.org/10.1016/j.ejrh.2018.08.004.

    • Search Google Scholar
    • Export Citation
  • Bierbaum, R., and Coauthors, 2013: A comprehensive review of climate adaptation in the United States: More than before, but less than needed. Mitigation Adapt. Strategies Global Change, 18, 361406, https://doi.org/10.1007/s11027-012-9423-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. J., R. S. Bradley, and F. T. Keimig, 2010: Changes in extreme climate indices for the northeastern United States, 1870–2005. J. Climate, 23, 65556572, https://doi.org/10.1175/2010JCLI3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bureau of Reclamation, 2013: Downscaled CMIP3 and CMIP5 climate and hydrology projections: Release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs’. Technical Services Center, Bureau of Reclamation, U.S. Department of the Interior, 47pp.

  • Bürger, G., T. Q. Murdock, A. T. Werner, S. R. Sobie, and A. J. Cannon, 2012: Downscaling extremes—An intercomparison of multiple statistical methods for present climate. J. Climate, 25, 43664388, https://doi.org/10.1175/JCLI-D-11-00408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bürger, S. R., S. R. Sobie, A. J. Cannon, A. T. Werner, and T. Q. Murdock, 2013: Downscaling extremes: An intercomparison of multiple methods for future climate. J. Climate, 26, 34293449, https://doi.org/10.1175/JCLI-D-12-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cash, D., W. C. Clark, F. Alcock, N. M. Dickson, N. Eckley, and J. Jäger, 2003: Salience, credibility, legitimacy and boundaries: Linking research, assessment and decision making. John F. Kennedy School of Government at Harvard University, Faculty Working Papers Series RWP02-046, 26 pp., http://nrs.harvard.edu/urn-3:HUL.InstRespos:32067415.

    • Crossref
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Philips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., W. R. Peltier, A. R. Erler, and J. Gula, 2014: Climate change impacts on Great Lakes Basin precipitation extremes. J. Geophys. Res. Atmos., 119, 10 79910 812, https://doi.org/10.1002/2014JD021855.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and Coauthors, 2017: Precipitation change in the United States. Climate Science Special Report: Fourth National Climate Assessment, D. J. Wuebbles et al., Eds., Vol. I, U. S. Global Change Research Program, 207–230.

  • Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, https://doi.org/10.1038/nclimate3110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, https://doi.org/10.1002/joc.1556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, https://doi.org/10.3354/cr019193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos., 124, 56965723, https://doi.org/10.1029/2018JD030094.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., and Coauthors, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, M. L., and R. S. Bradley, 2007: Variations of twentieth-century temperature and precipitation extreme indicators in the northeast United States. J. Climate, 20, 54015417, https://doi.org/10.1175/2007JCLI1594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. M. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, https://doi.org/10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. Knight, D. R. Easterling, T. R. Karl, G. Hegerl, and V. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, https://doi.org/10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E., T. Pruitt, M. P. Clark, L. Brekke, J. R. Arnold, D. A. Raff, and R. M. Rasmussen, 2014: An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour. Res., 50, 71677186, https://doi.org/10.1002/2014WR015559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2006: Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa. Int. J. Climatol., 26, 13151337, https://doi.org/10.1002/joc.1314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodgkins, G. A., and R. W. Dudley, 2011: Historical summer base flow and stormflow trends for New England rivers. Water Resour. Res., 47, W07528, https://doi.org/10.1029/2010WR009109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R., and Coauthors, 2014: Northeast. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 371–395.

  • Hosking, J. R. M., 1990: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Stat. Soc., 52B, 105124, https://www.jstor.org/stable/2345653.

    • Search Google Scholar
    • Export Citation
  • Janssen, E., D. J. Wuebbles, K. E. Kunkel, S. C. Olsen, and A. Goodmann, 2014: Observational- and model based trends and projections of extreme precipitation over the contiguous United States. Earth’s Future, 2, 99113, https://doi.org/10.1002/2013EF000185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, L. A., J. T. Abatzoglou, and D. P. Coulson, 2018: Climate data for RPA 2020 Assessment: MACAv2 (METDATA) historical modeled (1950-2005) and future (2006-2099) projections for the conterminous United States at the 1/24 degree grid scale. Forest Service Research Data Archive, https://doi.org/10.2737/RDS-2018-0014.

    • Crossref
    • Export Citation
  • Karl, T. R., N. Nicholls, and A. Ghazi, 1999: CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: Workshop summary. Climatic Change, 42, 37, https://doi.org/10.1023/A:1005491526870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karmalkar, A. V., J. M. Thibeault, A. M. Bryan, and A. Seth, 2019: Identifying credible and diverse GCMs for regional climate change studies—case study: Northeastern United States. Climatic Change, 154, 367386, https://doi.org/10.1007/s10584-019-02411-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keim, B., and B. Rock, 2002: New England region’s changing climate. Preparing for a Changing Climate: New England Regional Assessment Overview, U.S. Global Change Research Program, University of New Hampshire, 96 pp.

  • Kharin, V., F. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, https://doi.org/10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., G. M. Flato, X. Zhang, N. P. Gillett, F. Zwier, and K. J. Anderson, 2018: Risks from climate extremes change differently from 1.5°C to 2.0°C depending on rarity. Earth’s Future, 6, 704715, https://doi.org/10.1002/2018EF000813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchhoff, C. J., and Coauthors, 2019: Climate assessment for local action. Bull. Amer. Meteor. Soc., 100, 21472152, https://doi.org/10.1175/BAMS-D-18-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758, https://doi.org/10.1175/2009JCLI3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, https://doi.org/10.1002/grl.50256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotamarthi, R., L. Mearns, K. Hayhoe, C. Castro, and D. Wuebbles, 2016: Use of Climate Information for Decision-Making and Impact Research. Strategic Environment Research and Development Program Rep., U.S. Department of Defense, 55 pp.

  • Kunkel, K. E., and Coauthors, 2013: Regional climate trends and scenarios for the U.S. National Climate Assessment: Part 1—Climate of the Northeast U.S., NOAA Tech. Rep. NESDIS 142-1, 80 pp., https://www.nesdis.noaa.gov/sites/default/files/asset/document/NOAA_NESDIS_Tech_Report_142-1-Climate_of_the_Northeast_US.pdf.

  • Leung, L. R., T. Ringler, W. D. Collins, M. Taylor, and M. Ashfaq, 2013: A hierarchical evaluation of regional climate simulations. Eos, Trans. Amer. Geophys. Union, 94, 297298, https://doi.org/10.1002/2013EO340001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B. T. J., D. W. Bohn, F. Pierce, B. Munoz-Arriola, R. Nijssen, R. Vose, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the US, and southern Canada 1950–2013. Sci. Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, K. J., and C. B. Field, 2017: Toward the next generation of assessment. Annu. Rev. Environ. Resour., 42, 569597, https://doi.org/10.1146/annurev-environ-102016-061007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mabey, N., J. Gulledge, B. Finel, and K. Silverthorne, 2011: Degrees of Risk: Defining a Risk Management Framework for Climate Security. E3G Rep., 177 pp., https://www.c2es.org/document/degrees-of-risk-defining-a-risk-management-framework-for-climate-security/.

  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent development to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, D., and R. Knutti, 2011: Spatial-scale dependence of climate model performance in the CMIP3 ensemble. J. Climate, 24, 26802692, https://doi.org/10.1175/2011JCLI3513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., H. G. Hidalgo, and T. Das, 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, https://doi.org/10.5194/hess-14-1125-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, C. F., R. G. Jones, R. W. Lee, and D. P. Rowell, 2015: Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dyn., 44, 32373260, https://doi.org/10.1007/s00382-014-2418-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, https://doi.org/10.1175/BAMS-D-11-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C. Q., and Coauthors, 2014: Assessment of CMIP5 climate models and projected temperature changes over northern Eurasia. Environ. Res. Lett., 9, 055007, https://doi.org/10.1088/1748-9326/9/5/055007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizukami, N., and Coauthors, 2016: Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models. J. Hydrometeor., 17, 7398, https://doi.org/10.1175/JHM-D-14-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, L., M. E. Mann, R. Crane, T. Wagener, R. G. Najjar Jr., and R. Singh, 2012: Probabilistic projections of anthropogenic climate change impacts on precipitation for the mid-Atlantic region of the United States. J. Climate, 25, 52735291, https://doi.org/10.1175/JCLI-D-11-00565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, L., E. Riddle, and R. S. Bradley, 2015: Projected changes in climate extremes over the northeastern United States. J. Climate, 28, 32893310, https://doi.org/10.1175/JCLI-D-14-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Northeast Climate Adaptation Science Center, 2018: Massachusetts Climate Change Projections. Resilient MA Climate Change Clearinghouse for the Commonwealth (resilient MA), accessed May 2018, http://www.resilientma.org/resources/resource:2152.

  • Pierce, D. W., T. P. Barnett, B. D. Santer, and P. J. Gleckler, 2009: Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci., 106, 84418446, https://doi.org/10.1073/pnas.0900094106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2013: The key role of heavy precipitation events in climate model disagreements of future annual precipitation changes in California. J. Climate, 26, 58795896, https://doi.org/10.1175/JCLI-D-12-00766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeor., 15, 25582585, https://doi.org/10.1175/JHM-D-14-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, E. P. Maurer, J. T. Abatzoglou, and K. C. Hegewisch, 2015: Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeor., 16, 24212442, https://doi.org/10.1175/JHM-D-14-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S. D., D. W. Pierce, D. R. Cayan, A. Gershunov, and M. D. Dettinger, 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, https://doi.org/10.1038/srep04364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruti, P. M., and Coauthors, 2016: The MED-CORDEX initiative for Mediterranean climate studies. Bull. Amer. Meteor. Soc., 97, 11871208, https://doi.org/10.1175/BAMS-D-14-00176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T., P. C. Frumhoff, A. Luers, and J. Gulledge, 2014: The climate policy narrative for a dangerously warming world. Nat. Climate Change, 4, 164166, https://doi.org/10.1038/nclimate2148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., and Coauthors, 2019: Connecticut Physical Climate Science Assessment Report (PCSAR). Connecticut Institute for Resilience and Climate Adaptation (CIRCA), 74 pp., https://circa.uconn.edu/wp-content/uploads/sites/1618/2019/08/CTPCSAR-Aug2019.pdf.

  • Sheffield, J., and Coauthors, 2013: North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J. Climate, 26, 92099245, https://doi.org/10.1175/JCLI-D-12-00592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoner, A., K. Hayhoe, and X. Yang, 2012: An asynchronous regional regression model for statistical downscaling of daily climate variables. Int. J. Climatol., 33, 24732494, https://doi.org/10.1002/joc.3603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., J. M. Arblaster, and R. Knutti, 2011: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, https://doi.org/10.1029/2011GL049863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thibeault, J., and A. Seth, 2014: Changing climate extremes in the Northeast United States: Observations and projections from CMIP5. Climatic Change, 127, 273287, https://doi.org/10.1007/s10584-014-1257-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 1999: Conceptual framework for changes of extremes of the hydrologic cycle with climate change. Climatic Change, 42, 327339, https://doi.org/10.1023/A:1005488920935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J., and Coauthors, 2014: Our changing climate. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 19–67.

  • Wang, G., D. Wang, K. E. Trenberth, M. Yu, A. Erfanian, M. Bosilovich, and D. Parr, 2017a: The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Climate Change, 7, 268274, https://doi.org/10.1038/nclimate3239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., K. F. Ahmed, L. You, M. Yu, J. S. Pal, and Z. M. Ji, 2017b: Projecting regional climate and cropland changes using a linked biogeophysical-socioeconomic modeling framework. Part 1: Model description and an equilibrium application. J. Adv. Model. Earth Syst., 9, 354376, https://doi.org/10.1002/2016MS000712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and S. Dessai, 2010: Robust adaptation to climate change. Weather, 65, 180185, https://doi.org/10.1002/wea.543.

  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wootten, A., 2018: The subtle processes in statistical downscaling and the potential uncertainty. U.S. CLIVAR Variations, Vol. 16, No. 3, International CLIVAR Project Office, Southampton, United Kingdom, 8–13, https://usclivar.org/newsletter/newsletters.

  • Wootten, A., A. Terando, B. J. Reich, R. P. Boyles, and F. Semazzi, 2017: Characterizing source of uncertainty from global climate models and downscaling techniques. J. Appl. Meteor. Climatol., 56, 32453262, https://doi.org/10.1175/JAMC-D-17-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. Klein Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zobel, Z., J. Wang, D. J. Wuebbles, and V. R. Kotamarthi, 2018: Analyses for high-resolution projections through the end of the 21st century for precipitation extremes over the United States. Earth’s Future, 6, 14711490, https://doi.org/10.1029/2018EF000956.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 326 326 50
Full Text Views 47 47 8
PDF Downloads 61 61 11

Projected Changes of Precipitation Characteristics Depend on Downscaling Method and Training Data: MACA versus LOCA Using the U.S. Northeast as an Example

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
  • 2 Center for Environmental Science and Engineering, University of Connecticut, Storrs, Connecticut
  • 3 Department of Geography, University of Connecticut, Storrs, Connecticut
  • 4 Department of Geography, University of Idaho, Moscow, Idaho
  • 5 Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado
  • 6 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • 7 Scripps Institution of Oceanography, La Jolla, California
© Get Permissions
Restricted access

Abstract

This study compares projected changes of precipitation characteristics in the U.S. Northeast in two analog-based climate downscaling products, Multivariate Adaptive Constructed Analogs (MACA) and Localized Constructed Analogs (LOCA). The level of similarity or differences between the two products varies with the type of precipitation metrics. For the total precipitation amount, the two products project significant annual increases that are similar in magnitude, spatial pattern, and seasonal distribution, with the largest increases in winter and spring. For the overall precipitation intensity or temporal aggregation of heavy precipitation (e.g., number of days with more than one inch of precipitation, the simple intensity index, and the fraction of annual precipitation accounted for by heavy events), both products project significant increases across the region with strong model consensus; the magnitude of absolute increases are similar between the two products, but the relative increases are larger in LOCA due to an underestimation of heavy precipitation in LOCA’s training data. For precipitation extremes such as the annual maximum 1-day precipitation, both products project significant increases in the long-term mean, but the magnitude of both the absolute and relative changes are much smaller in LOCA than in MACA, indicating that the extreme precipitation differences in the training data are amplified in future projections as a result of the analog-based downscaling algorithms. The two products differ the most in the intensity and frequency of rare extremes (e.g., 1-in-20-years events) for which MACA projects significant increases while the LOCA-projected changes are inconclusive over much of the study area.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guiling Wang, guiling.wang@uconn.edu

Abstract

This study compares projected changes of precipitation characteristics in the U.S. Northeast in two analog-based climate downscaling products, Multivariate Adaptive Constructed Analogs (MACA) and Localized Constructed Analogs (LOCA). The level of similarity or differences between the two products varies with the type of precipitation metrics. For the total precipitation amount, the two products project significant annual increases that are similar in magnitude, spatial pattern, and seasonal distribution, with the largest increases in winter and spring. For the overall precipitation intensity or temporal aggregation of heavy precipitation (e.g., number of days with more than one inch of precipitation, the simple intensity index, and the fraction of annual precipitation accounted for by heavy events), both products project significant increases across the region with strong model consensus; the magnitude of absolute increases are similar between the two products, but the relative increases are larger in LOCA due to an underestimation of heavy precipitation in LOCA’s training data. For precipitation extremes such as the annual maximum 1-day precipitation, both products project significant increases in the long-term mean, but the magnitude of both the absolute and relative changes are much smaller in LOCA than in MACA, indicating that the extreme precipitation differences in the training data are amplified in future projections as a result of the analog-based downscaling algorithms. The two products differ the most in the intensity and frequency of rare extremes (e.g., 1-in-20-years events) for which MACA projects significant increases while the LOCA-projected changes are inconclusive over much of the study area.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guiling Wang, guiling.wang@uconn.edu
Save