• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, K., S. Shahid, X. Wang, N. Nawaz, and N. Khan, 2019: Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water, 11, 210, https://doi.org/10.3390/w11020210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akinsanola, A. A., K. O. Ogunjobi, V. O. Ajayi, E. A. Adefisan, J. A. Omotosho, and S. Sanogo, 2017: Comparison of five gridded precipitation products at climatological scales over West Africa. Meteor. Atmos. Phys., 129, 669689, https://doi.org/10.1007/s00703-016-0493-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, A. P., J. C. Stroeve, and M. C. Serreze, 2020: Arctic Ocean precipitation from atmospheric reanalyses and comparisons with North Pole drifting station records. J. Geophys. Res. Oceans, 125, e2019JC015415, https://doi.org/10.1029/2019JC015415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2017: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2019: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, S., D. Cornford, and L. Bastin, 2015: How good are citizen weather stations? Addressing a biased opinion. Weather, 70, 7584, https://doi.org/10.1002/wea.2316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burton, C., S. Rifai, and Y. Malhi, 2018: Inter-comparison and assessment of gridded climate products over tropical forests during the 2015/2016 El Niño. Philos. Trans. Roy. Soc. London, 373B, 20170406, https://doi.org/10.1098/rstb.2017.0406.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and T. Knutson, 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 16051621, https://doi.org/10.1175/2007JCLI1494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Contractor, S., L. V. Alexander, M. G. Donat, and N. Herold, 2015: How well do gridded datasets of observed daily precipitation compare over Australia? Adv. Meteor., 2015, 325718, https://doi.org/10.1155/2015/325718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S., and Coauthors, 2020: Rainfall Estimates on a Gridded Network (REGEN) – A global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrol. Earth Syst. Sci., 24, 919943, https://doi.org/10.5194/hess-24-919-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaconescu, E. P., P. Gachon, and R. Laprise, 2015: On the remapping procedure of daily precipitation statistics and indices used in regional climate model evaluation. J. Hydrometeor., 16, 23012310, https://doi.org/10.1175/JHM-D-15-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., S. J. Connor, P. Ceccato, and C. F. Ropelewski, 2008: Comparison of global gridded precipitation products over a mountainous region of Africa. Int. J. Climatol., 28, 16271638, https://doi.org/10.1002/joc.1669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., L. V. Alexander, H. Yang, I. Durre, R. Vose, and J. Caesar, 2013a: Global land-based datasets for monitoring climatic extremes. Bull. Amer. Meteor. Soc., 94, 9971006, https://doi.org/10.1175/BAMS-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013b: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., J. Sillmann, S. Wild, L. V. Alexander, T. Lippmann, and F. W. Zwiers, 2014: Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis datasets. J. Climate, 27, 50195035, https://doi.org/10.1175/JCLI-D-13-00405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faridzad, M., T. Yang, K. Hsu, S. Sorooshian, and C. Xiao, 2018: Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information. J. Hydrol., 563, 123142, https://doi.org/10.1016/j.jhydrol.2018.05.071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 547554, https://doi.org/10.1002/2013GL058499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560564, https://doi.org/10.1038/nclimate2617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gado, T. A., K. Hsu, and S. Sorooshian, 2017: Rainfall frequency analysis for ungauged sites using satellite precipitation products. J. Hydrol., 554, 646655, https://doi.org/10.1016/j.jhydrol.2017.09.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gehne, M., T. M. Hamill, G. N. Kiladis, and K. E. Trenberth, 2016: Comparison of global precipitation estimates across a range of temporal and spatial scales. J. Climate, 29, 77737795, https://doi.org/10.1175/JCLI-D-15-0618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., L. B. Tremblay, J. R. Gyakum, and E. Atallah, 2014: Representing extremes in a daily gridded precipitation analysis over the United States: Impacts of station density, resolution, and gridding methods. J. Climate, 27, 52015218, https://doi.org/10.1175/JCLI-D-13-00319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, S., D. Das, S.-C. Kao, and A. R. Ganguly, 2012: Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nat. Climate Change, 2, 8691, https://doi.org/10.1038/nclimate1327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO Solid Precipitation Measurement Intercomparison. Instruments and Observing Methods Rep. 67, 318 pp., https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf.

  • Herrera, S., S. Kotlarski, P. M. M. Soares, R. M. Cardoso, A. Jaczewski, J. M. Gutiérrez, and D. Maraun, 2019: Uncertainty in gridded precipitation products: Influence of station density, interpolation method and grid resolution. Int. J. Climatol., 39, 37173729, https://doi.org/10.1002/joc.5878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Zhou, X. Chen, J. Li, Q. Li, D. Chen, W. Liu, and G. Yin, 2018: Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. Int. J. Climatol., 38, 34753493, https://doi.org/10.1002/joc.5510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingram, W., 2016: Increases all round. Nat. Climate Change, 6, 443444, https://doi.org/10.1038/nclimate2966.

  • Javanmard, S., A. Yatagai, M. I. Nodzu, J. BodaghJamali, and H. Kawamoto, 2010: Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran. Adv. Geosci., 25, 119125, https://doi.org/10.5194/adgeo-25-119-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, and X. Zhang, 2005: Intercomparison of near-surface temperature and precipitation extremes in AMIP-2 simulations, reanalyses, and observations. J. Climate, 18, 52015223, https://doi.org/10.1175/JCLI3597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., P. Bauer, J. Turk, G. J. Huffman, R. Joyce, and D. Braithwaite, 2012: Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor., 13, 6783, https://doi.org/10.1175/JHM-D-11-042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson, and D. B. Kirschbaum, 2017: So, how much of the Earth’s surface is covered by rain gauges? Bull. Amer. Meteor. Soc., 98, 6978, https://doi.org/10.1175/BAMS-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World Map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, https://doi.org/10.1127/0941-2948/2006/0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogh, S. A., and J. W. Pomeroy, 2018: Recent changes to the hydrological cycle of an Arctic basin at the tundra–taiga transition. Hydrol. Earth Syst. Sci., 22, 39934014, https://doi.org/10.5194/hess-22-3993-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogh, S. A., J. W. Pomeroy, and J. McPhee, 2015: Physically based mountain hydrological modeling using reanalysis data in Patagonia. J. Hydrometeor., 16, 172193, https://doi.org/10.1175/JHM-D-13-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKellar, N. C., B. C. Hewitson, and M. A. Tadross, 2007: Namaqualand’s climate: Recent historical changes and future scenarios. J. Arid Environ., 70, 604614, https://doi.org/10.1016/j.jaridenv.2006.03.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., M. P. Clark, R. J. Longman, and T. W. Giambelluca, 2019: Methodological intercomparisons of station-based gridded meteorological products: Utility, limitations, and paths forward. J. Hydrometeor., 20, 531547, https://doi.org/10.1175/JHM-D-18-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, P., M. Ombadi, S. Sorooshian, K. Hsu, A. AghaKouchak, D. Braithwaite, H. Ashouri, and A. R. Thorstensen, 2018: The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci., 22, 58015816, https://doi.org/10.5194/hess-22-5801-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ombadi, M., P. Nguyen, S. Sorooshian, and K. Hsu, 2018: Developing Intensity-Duration-Frequency (IDF) curves from satellite-based precipitation: Methodology and evaluation. Water Resour. Res., 54, 77527766, https://doi.org/10.1029/2018WR022929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., and D. Koutsoyiannis, 2013: Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res., 49, 187201, https://doi.org/10.1029/2012WR012557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., and D. Koutsoyiannis, 2016: A global survey on the seasonal variation of the marginal distribution of daily precipitation. Adv. Water Resour., 94, 131145, https://doi.org/10.1016/j.advwatres.2016.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., D. Koutsoyiannis, and C. Makropoulos, 2013: How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrol. Earth Syst. Sci., 17, 851862, https://doi.org/10.5194/hess-17-851-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., A. AghaKouchak, and E. Foufoula-Georgiou, 2018: A diagnostic framework for understanding climatology of tails of hourly precipitation extremes in the United States. Water Resour. Res., 54, 67256738, https://doi.org/10.1029/2018WR022732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and B. E. Goodison, 1997: Winter and snow. The Surface Climates of Canada, McGill-Queen’s University Press, 68100.

  • Rajah, K., T. O’Leary, A. Turner, G. Petrakis, M. Leonard, and S. Westra, 2014: Changes to the temporal distribution of daily precipitation. Geophys. Res. Lett., 41, 88878894, https://doi.org/10.1002/2014GL062156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satgé, F., D. Defrance, B. Sultan, M.-P. Bonnet, F. Seyler, N. Rouché, F. Pierron, and J.-E. Paturel, 2020: Evaluation of 23 gridded precipitation datasets across West Africa. J. Hydrol., 581, 124412, https://doi.org/10.1016/j.jhydrol.2019.124412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and F. Lo, 2005: Northern high-latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals. Mon. Wea. Rev., 133, 34073430, https://doi.org/10.1175/MWR3047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, R., and V. Mishra, 2014: Evaluation of the reanalysis products for the monsoon season droughts in India. J. Hydrometeor., 15, 15751591, https://doi.org/10.1175/JHM-D-13-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shamir, E., K. P. Georgakakos, and M. J. Murphy, 2013: Frequency analysis of the 7–8 December 2010 extreme precipitation in the Panama canal watershed. J. Hydrol., 480, 136148, https://doi.org/10.1016/j.jhydrol.2012.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K. Hsu, D. Braithwaite, H. Ashouri, and NOAA CDR Program, 2014: NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR), version 1 revision 1. NOAA National Centers for Environmental Information, accessed 12 December 2018, https://doi.org/10.7289/V51V5BWQ.

    • Crossref
    • Export Citation
  • Sun, Q., D. Kong, C. Miao, Q. Duan, T. Yang, A. Ye, Z. Di, and W. Gong, 2014: Variations in global temperature and precipitation for the period of 1948 to 2010. Environ. Monit. Assess., 186, 56635679, https://doi.org/10.1007/s10661-014-3811-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2015: Global hourly land surface air temperature datasets: Inter-comparison and climate change. Int. J. Climatol., 35, 39593968, https://doi.org/10.1002/joc.4257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, 2014: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resour. Res., 50, 75057514, https://doi.org/10.1002/2014WR015638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, J. S., S. Razavi, B. R. Bonsal, H. S. Wheater, and Z. E. Asong, 2017: Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrol. Earth Syst. Sci., 21, 21632185, https://doi.org/10.5194/hess-21-2163-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., N. Chen, H. Moradkhani, X. Zhang, and C. Hu, 2020: Improving global monthly and daily precipitation estimation by fusing gauge observations, remote sensing, and reanalysis data sets. Water Resour. Res., 56, e2019WR026444, https://doi.org/10.1029/2019WR026444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and Coauthors, 2001: Compatibility evaluation of national precipitation gage measurements. J. Geophys. Res., 106, 14811491, https://doi.org/10.1029/2000JD900612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, H., M. G. Donat, L. V. Alexander, and Y. Sun, 2015: Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. Int. J. Climatol., 35, 28092827, https://doi.org/10.1002/joc.4174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., H. Körnich, and K. Holmgren, 2013: How well do reanalyses represent the southern African precipitation? Climate Dyn., 40, 951962, https://doi.org/10.1007/s00382-012-1423-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 325 325 113
Full Text Views 28 28 18
PDF Downloads 39 39 28

Assessment of Extremes in Global Precipitation Products: How Reliable Are They?

View More View Less
  • 1 Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
© Get Permissions
Restricted access

Abstract

Global gridded precipitation products have proven essential for many applications ranging from hydrological modeling and climate model validation to natural hazard risk assessment. They provide a global picture of how precipitation varies across time and space, specifically in regions where ground-based observations are scarce. While the application of global precipitation products has become widespread, there is limited knowledge on how well these products represent the magnitude and frequency of extreme precipitation—the key features in triggering flood hazards. Here, five global precipitation datasets (MSWEP, CFSR, CPC, PERSIANN-CDR, and WFDEI) are compared to each other and to surface observations. The spatial variability of relatively high precipitation events (tail heaviness) and the resulting discrepancy among datasets in the predicted precipitation return levels were evaluated for the time period 1979–2017. The analysis shows that 1) these products do not provide a consistent representation of the behavior of extremes as quantified by the tail heaviness, 2) there is strong spatial variability in the tail index, 3) the spatial patterns of the tail heaviness generally match the Köppen–Geiger climate classification, and 4) the predicted return levels for 100 and 1000 years differ significantly among the gridded products. More generally, our findings reveal shortcomings of global precipitation products in representing extremes and highlight that there is no single global product that performs best for all regions and climates.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0040.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Simon Michael Papalexiou, sm.papalexiou@usask.ca

Abstract

Global gridded precipitation products have proven essential for many applications ranging from hydrological modeling and climate model validation to natural hazard risk assessment. They provide a global picture of how precipitation varies across time and space, specifically in regions where ground-based observations are scarce. While the application of global precipitation products has become widespread, there is limited knowledge on how well these products represent the magnitude and frequency of extreme precipitation—the key features in triggering flood hazards. Here, five global precipitation datasets (MSWEP, CFSR, CPC, PERSIANN-CDR, and WFDEI) are compared to each other and to surface observations. The spatial variability of relatively high precipitation events (tail heaviness) and the resulting discrepancy among datasets in the predicted precipitation return levels were evaluated for the time period 1979–2017. The analysis shows that 1) these products do not provide a consistent representation of the behavior of extremes as quantified by the tail heaviness, 2) there is strong spatial variability in the tail index, 3) the spatial patterns of the tail heaviness generally match the Köppen–Geiger climate classification, and 4) the predicted return levels for 100 and 1000 years differ significantly among the gridded products. More generally, our findings reveal shortcomings of global precipitation products in representing extremes and highlight that there is no single global product that performs best for all regions and climates.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0040.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Simon Michael Papalexiou, sm.papalexiou@usask.ca
Save