• Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174, https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. I. J. M. Van Dijk, V. Levizzani, J. Schellekens, D. Gonzalez Miralles, B. Martens, and A. De Roo, 2017: MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21, 589615, https://doi.org/10.5194/hess-21-589-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2019: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10, 14141429, https://doi.org/10.1175/2009JHM1139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellerby, T., M. Todd, D. Kniveton, and C. Kidd, 2000: Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteor., 39, 21152128, https://doi.org/10.1175/1520-0450(2001)040<2115:REFACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fick, S. E., and R. J. Hijmans, 2017: WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 43024315, https://doi.org/10.1002/joc.5086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, D. C., J.-M. Faurès, D. A. Woolhiser, L. J. Lane, and S. Sorooshian, 1995: Measurement and analysis of small-scale convective storm rainfall variability. J. Hydrol., 173, 283308, https://doi.org/10.1016/0022-1694(95)02703-R.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, and E. N. Anagnostou, 2004: Retrieval of precipitation profiles from multiresolution, multifrequency active and passive microwave observations. J. Appl. Meteor., 43, 562575, https://doi.org/10.1175/1520-0450(2004)043<0562:ROPPFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sikdar, 1978: Rain estimation from geosynchronous satellite imagery—Visible and infrared studies. Mon. Wea. Rev., 106, 11531171, https://doi.org/10.1175/1520-0493(1978)106<1153:REFGSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurka, J. J., and T. J. Schmit, 2004: Baseline instruments planned for the GOES-R series. Proc. SPIE, 5549, 96104, https://doi.org/10.1117/12.555720.

    • Crossref
    • Export Citation
  • Habib, E., A. T. Haile, Y. Tian, and R. J. Joyce, 2012: Evaluation of the high-resolution CMORPH satellite rainfall product using dense rain gauge observations and radar-based estimates. J. Hydrometeor., 13, 17841798, https://doi.org/10.1175/JHM-D-12-017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341853, https://doi.org/10.1175/JAM2173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2018: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 5.2, 35 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf.

  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205218, https://doi.org/10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, https://doi.org/10.5194/hess-15-1109-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D., D. Miller, R. Fulton, and F. Ding, 2013: Radar and multisensor precipitation estimation techniques in National Weather Service hydrologic operations. J. Hydrol. Eng., 18, 133142, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., Y. Li, Y. Hao, and Y. Zhang, 2016: Improvements to the GOES-R rainfall rate algorithm. J. Hydrometeor., 17, 16931704, https://doi.org/10.1175/JHM-D-15-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and L. Giglio, 1995: A method for combining passive microwave and infrared rainfall observations. J. Atmos. Oceanic Technol., 12, 3345, https://doi.org/10.1175/1520-0426(1995)012<0033:AMFCPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letu, H., and Coauthors, 2020: High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ., 239, 111583, https://doi.org/10.1016/j.rse.2019.111583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V., F. Porcú, F. S. Marzano, A. Mugnai, E. A. Smith, and F. Prodi, 1996: Investigating a SSM/I microwave algorithm to calibrate METEOSAT infrared instantaneous rainrate estimates. Meteor. Appl., 3, 517, https://doi.org/10.1002/met.5060030102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Mahmoud, M. T., M. A. Al-Zahrani, and H. O. Sharif, 2018: Assessment of global precipitation measurement satellite products over Saudi Arabia. J. Hydrol., 559, 112, https://doi.org/10.1016/j.jhydrol.2018.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., M. Palmacci, D. Cimini, G. Giuliani, and F. J. Turk, 2004: Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. IEEE Trans. Geosci. Remote Sens., 42, 10181032, https://doi.org/10.1109/TGRS.2003.820312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, H., M. Kühnlein, T. Appelhans, and T. Nauss, 2016: Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals. Atmos. Res., 169, 424433, https://doi.org/10.1016/j.atmosres.2015.09.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. W., P. A. Arkin, and R. Joyce, 2001: A combined microwave/infrared rain rate algorithm. Int. J. Remote Sens., 22, 32853307, https://doi.org/10.1080/01431160152609155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, P., and Coauthors, 2019: The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Sci. Data, 6, 180296, https://doi.org/10.1038/sdata.2018.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, P., E. J. Shearer, M. Ombadi, V. A. Gorooh, K. Hsu, S. Sorooshian, W. S. Logan, and M. Ralph, 2020: PERSIANN Dynamic Infrared-Rain rate model (PDIR) for high-resolution, real-time satellite precipitation estimation. Bull. Amer. Meteor. Soc., 101, E286E302, https://doi.org/10.1175/BAMS-D-19-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omranian, E., H. O. Sharif, and A. A. Tavakoly, 2018: How well can global precipitation measurement (GPM) capture hurricanes? Case study: Hurricane Harvey. Remote Sens., 10, 1150, https://doi.org/10.3390/rs10071150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, K., S. T. Purucker, S. R. Kraemer, J. E. Babendreier, and C. D. Knightes, 2014: Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. Hydrol. Processes, 28, 35053520, https://doi.org/10.1002/hyp.9890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeghi, M., A. A. Asanjan, M. Faridzad, P. Nguyen, K. Hsu, S. Sorooshian, and D. Braithwaite, 2019: PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks. J. Hydrometeor., 20, 22732289, https://doi.org/10.1175/JHM-D-19-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, https://doi.org/10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, S. A. Ackerman, and J. J. Gurka, 2009: High-spectral-and high-temporal-resolution infrared measurements from geostationary orbit. J. Atmos. Oceanic Technol., 26, 22732292, https://doi.org/10.1175/2009JTECHA1248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and R. J. Kuligowski, 2003: Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Wea. Forecasting, 18, 10371051, https://doi.org/10.1175/1520-0434(2003)018<1037:SAOOOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellars, S., P. Nguyen, W. Chu, X. Gao, K. Hsu, and S. Sorooshian, 2013: Computational Earth science: Big data transformed into insight. Eos, Trans. Amer. Geophys. Union, 94, 277278, https://doi.org/10.1002/2013EO320001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., J. Hawkins, E. A. Smith, F. S. Marzano, A. Mugnai, and V. Levizzani, 2000: Combining SSM/I, TRMM and infrared geostationary satellite data in a near-realtime fashion for rapid precipitation updates: Advantages and limitations. Proc. 2000 EUMETSAT Meteorological Satellite Data Users’ Conf., Bologna, Italy, EUMP, 705707.

  • Turk, F. J., E. E. Ebert, H.-J. Oh, B.-J. Sohn, V. Levizzani, E. A. Smith, and R. Ferraro, 2003: Validation of an operational global precipitation analysis at short time scales. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, J1.2.

  • Upadhyaya, S. A., P.-E. Kirstetter, J. J. Gourley, and R. J. Kuligowski, 2020: On the propagation of satellite precipitation estimation errors: From passive microwave to infrared estimates. J. Hydrometeor., 21, 13671381, https://doi.org/10.1175/JHM-D-19-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., C. F. Mass, and B. A. Colle, 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 80, 22892298, https://doi.org/10.1175/1520-0477(1999)080<2289:TLOTWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Z. Zhang, C. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 16371658, https://doi.org/10.1175/BAMS-D-16-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 134 134 53
Full Text Views 30 30 25
PDF Downloads 29 29 23

PERSIANN Dynamic Infrared–Rain Rate (PDIR-Now): A Near-Real-Time, Quasi-Global Satellite Precipitation Dataset

View More View Less
  • 1 Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California
  • 2 Mesoscale Atmospheric Processes Laboratory, NASA GSFC, Greenbelt, Maryland
  • 3 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

This study presents the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Dynamic Infrared Rain Rate (PDIR-Now) near-real-time precipitation dataset. This dataset provides hourly, quasi-global, infrared-based precipitation estimates at 0.04° × 0.04° spatial resolution with a short latency (15–60 min). It is intended to supersede the PERSIANN–Cloud Classification System (PERSIANN-CCS) dataset previously produced as the near-real-time product of the PERSIANN family. We first provide a brief description of the algorithm’s fundamentals and the input data used for deriving precipitation estimates. Second, we provide an extensive evaluation of the PDIR-Now dataset over annual, monthly, daily, and subdaily scales. Last, the article presents information on the dissemination of the dataset through the Center for Hydrometeorology and Remote Sensing (CHRS) web-based interfaces. The evaluation, conducted over the period 2017–18, demonstrates the utility of PDIR-Now and its improvement over PERSIANN-CCS at all temporal scales. Specifically, PDIR-Now improves the estimation of rain/no-rain days as demonstrated by a critical success index (CSI) of 0.53 compared to 0.47 of PERSIANN-CCS. In addition, PDIR-Now improves the estimation of seasonal and diurnal cycles of precipitation as well as regional precipitation patterns erroneously estimated by PERSIANN-CCS. Finally, an evaluation is carried out to examine the performance of PDIR-Now in capturing two extreme events, Hurricane Harvey and a cluster of summer thunderstorms that occurred over the Netherlands, where it is shown that PDIR-Now adequately represents spatial precipitation patterns as well as subdaily precipitation rates with a correlation coefficient (CORR) of 0.64 for Hurricane Harvey and 0.76 for the Netherlands thunderstorms.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Phu Nguyen, ndphu@uci.edu

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Abstract

This study presents the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Dynamic Infrared Rain Rate (PDIR-Now) near-real-time precipitation dataset. This dataset provides hourly, quasi-global, infrared-based precipitation estimates at 0.04° × 0.04° spatial resolution with a short latency (15–60 min). It is intended to supersede the PERSIANN–Cloud Classification System (PERSIANN-CCS) dataset previously produced as the near-real-time product of the PERSIANN family. We first provide a brief description of the algorithm’s fundamentals and the input data used for deriving precipitation estimates. Second, we provide an extensive evaluation of the PDIR-Now dataset over annual, monthly, daily, and subdaily scales. Last, the article presents information on the dissemination of the dataset through the Center for Hydrometeorology and Remote Sensing (CHRS) web-based interfaces. The evaluation, conducted over the period 2017–18, demonstrates the utility of PDIR-Now and its improvement over PERSIANN-CCS at all temporal scales. Specifically, PDIR-Now improves the estimation of rain/no-rain days as demonstrated by a critical success index (CSI) of 0.53 compared to 0.47 of PERSIANN-CCS. In addition, PDIR-Now improves the estimation of seasonal and diurnal cycles of precipitation as well as regional precipitation patterns erroneously estimated by PERSIANN-CCS. Finally, an evaluation is carried out to examine the performance of PDIR-Now in capturing two extreme events, Hurricane Harvey and a cluster of summer thunderstorms that occurred over the Netherlands, where it is shown that PDIR-Now adequately represents spatial precipitation patterns as well as subdaily precipitation rates with a correlation coefficient (CORR) of 0.64 for Hurricane Harvey and 0.76 for the Netherlands thunderstorms.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Phu Nguyen, ndphu@uci.edu

This article is included in the 12th International Precipitation Conference (IPC12) Special Collection.

Save