• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akbar, R., D. Short Gianotti, K. A. McColl, E. Haghighi, G. D. Salvucci, and D. Entekhabi, 2018: Hydrological storage length scales represented by remote sensing estimates of soil moisture and precipitation. Water Resour. Res., 54, 14761492, https://doi.org/10.1002/2017WR021508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akbar, R., D. J. Short Gianotti, G. D. Salvucci, and D. Entekhabi, 2019: Mapped hydroclimatology of evapotranspiration and drainage runoff using SMAP brightness temperature observations and precipitation information. Water Resour. Res., 55, 33913413, https://doi.org/10.1029/2018WR024459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al-Yaari, A., and Coauthors, 2017: Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets. Remote Sens. Environ., 193, 257273, https://doi.org/10.1016/j.rse.2017.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armanios, D. E., and J. B. Fisher, 2014: Measuring water availability with limited ground data: Assessing the feasibility of an entirely remote-sensing-based hydrologic budget of the Rufiji Basin, Tanzania, using TRMM, GRACE, MODIS, SRB, and AIRS. Hydrol. Processes, 28, 853867, https://doi.org/10.1002/hyp.9611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badgley, G., J. B. Fisher, C. Jiménez, K. P. Tu, and R. Vinukollu, 2015: On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets. J. Hydrometeor., 16, 14491455, https://doi.org/10.1175/JHM-D-14-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., S. Ma, D. Szutu, and J. Verfaillie, 2016: AmeriFlux US-Ton Tonzi Ranch. AmeriFlux, University of California, accessed 28 January 2020, https://doi.org/10.17190/AMF/1245971.

  • Brocca, L., T. Moramarco, F. Melone, and W. Wagner, 2013: A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett., 40, 853858, https://doi.org/10.1002/grl.50173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos., 119, 51285141, https://doi.org/10.1002/2014JD021489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., A. Tarpanelli, P. Filippucci, W. Dorigo, F. Zaussinger, A. Gruber, and D. Fernández-Prieto, 2018: How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf., 73, 752766, https://doi.org/10.1016/j.jag.2018.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., E. Han, D. Ryu, C. R. Hain, and M. C. Anderson, 2017: Estimating annual water storage variations in medium-scale (2000–10 000 km2) basins using microwave-based soil moisture retrievals. Hydrol. Earth Syst. Sci., 21, 18491862, https://doi.org/10.5194/hess-21-1849-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decker, M., and X. Zeng, 2009: Impact of modified Richards equation on global soil moisture simulation in the Community Land Model (CLM3. 5). J. Adv. Model. Earth Syst., 1 (3), https://doi.org/10.3894/JAMES.2009.1.5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demory, M. E., P. L. Vidale, M. J. Roberts, P. Berrisford, J. Strachan, R. Schiemann, and M. S. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn., 42, 22012225, https://doi.org/10.1007/s00382-013-1924-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., and C. D. Kummerow, 2017: Microwave retrievals of terrestrial precipitation over snow-covered surfaces: A lesson from the GPM satellite. Geophys. Res. Lett., 44, 61546162, https://doi.org/10.1002/2017GL073451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., R. L. Bras, and E. Foufoula-Georgiou, 2015: Shrunken locally linear embedding for passive microwave retrieval of precipitation. IEEE Trans. Geosci. Remote Sens., 53, 37203736, https://doi.org/10.1109/TGRS.2014.2382436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and Coauthors, 2011: Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett., 38, L03403, https://doi.org/10.1029/2010GL046442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez-Moran, R., and Coauthors, 2017: SMOS-IC: An alternative SMOS soil moisture and vegetation optical depth product. Remote Sens., 9, 457, https://doi.org/10.3390/rs9050457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finch, J. W., 1998: Estimating direct groundwater recharge using a simple water balance model–sensitivity to land surface parameters. J. Hydrol., 211, 112125, https://doi.org/10.1016/S0022-1694(98)00225-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., K. P. Tu, and D. D. Baldocchi, 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919, https://doi.org/10.1016/j.rse.2007.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., and Coauthors, 2017: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res., 53, 26182626, https://doi.org/10.1002/2016WR020175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getirana, A., S. Kumar, M. Girotto, and M. Rodell, 2017: Rivers and floodplains as key components of global terrestrial water storage variability. Geophys. Res. Lett., 44, 10 35910 368, https://doi.org/10.1002/2017GL074684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghiggi, G., S. I. Seneviratne, V. Humphrey, and L. Gudmundsson, 2019a: GRUN: Global Runoff Reconstruction (GRUN_v1). ETH Zurich, accessed 28 January 2020, https://doi.org/10.3929/ethz-b-000324386.

    • Crossref
    • Export Citation
  • Ghiggi, G., V. Humphrey, S. I. Seneviratne, and L. Gudmundsson, 2019b: GRUN: An observations-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data, 11, 16551674, https://doi.org/10.5194/essd-11-1655-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurdak, J. J., 2017: Climate-induced pumping. Nat. Geosci., 10, 71, https://doi.org/10.1038/ngeo2885.

  • Hengl, T., and Coauthors, 2014: SoilGrids1km—Global soil information based on automated mapping. PLOS ONE, 9, e105992, https://doi.org/10.1371/journal.pone.0105992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jalilvand, E., M. Tajrishy, S. A. G. Z. Hashemi, and L. Brocca, 2019: Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ., 231, 111226, https://doi.org/10.1016/j.rse.2019.111226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., P. Waldteufel, J. P. Wigneron, J. A. M. J. Martinuzzi, J. Font, and M. Berger, 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 17291735, https://doi.org/10.1109/36.942551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konikow, L. F., 2011: Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett., 38, L17401, https://doi.org/10.1029/2011GL048604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., L. Brocca, W. T. Crow, M. S. Burgin, and G. J. De Lannoy, 2016: Precipitation estimation using L-band and C-band soil moisture retrievals. Water Resour. Res., 52, 72137225, https://doi.org/10.1002/2016WR019024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., W. T. Crow, R. H. Reichle, and S. P. Mahanama, 2018: Estimating basin-scale water budgets with SMAP soil moisture data. Water Resour. Res., 54, 42284244, https://doi.org/10.1029/2018WR022669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawston, P. M., J. A. Santanello Jr., and S. V. Kumar, 2017: Irrigation signals detected from SMAP soil moisture retrievals. Geophys. Res. Lett., 44, 11 86011 867, https://doi.org/10.1002/2017GL075733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and H. V. Gupta, 2007: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res., 43, W07401, https://doi.org/10.1029/2006WR005756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., H. Kunstmann, B. Devaraju, M. J. Tourian, N. Sneeuw, and J. Riegger, 2014: Large-scale runoff from landmasses: A global assessment of the closure of the hydrological and atmospheric water balances. J. Hydrometeor., 15, 21112139, https://doi.org/10.1175/JHM-D-13-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McColl, K. A., and Coauthors, 2017: Global characterization of surface soil moisture drydowns. Geophys. Res. Lett., 44, 36823690, https://doi.org/10.1002/2017GL072819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montzka, C., M. Herbst, L. Weihermüller, A. Verhoef, and H. Vereecken, 2017: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth Syst. Sci. Data, 9, 529543, https://doi.org/10.5194/essd-9-529-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, S., and J. B. Fisher, 2012: Challenges and opportunities in GRACE-based groundwater storage assessment and management: An example from Yemen. Water Resour. Manage., 26, 14251453, https://doi.org/10.1007/s11269-011-9966-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2012: Challenges and Opportunities in the Hydrologic Sciences. National Academies Press, 200 pp.

  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multi-parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, https://doi.org/10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • O’Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, and R. Bindlish, 2018: SMAP enhanced L3 radiometer global daily 9 km EASE-grid soil moisture, version 2. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 28 January 2020, https://doi.org/10.5067/RFKIZ5QY5ABN.

    • Crossref
    • Export Citation
  • Padrón, R. S., L. Gudmundsson, and S. I. Seneviratne, 2019: Observational constraints reduce likelihood of extreme changes in multidecadal land water availability. Geophys. Res. Lett., 46, 736744, https://doi.org/10.1029/2018GL080521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellet, V., F. Aires, A. Mariotti, and D. Fernández-Prieto, 2018: Analyzing the Mediterranean water cycle via satellite data integration. Pure Appl. Geophys., 175, 39093937, https://doi.org/10.1007/s00024-018-1912-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellet, V., and Coauthors, 2019: Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle–Application to the Mediterranean region. Hydrol. Earth Syst. Sci., 23, 465491, https://doi.org/10.5194/hess-23-465-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polhamus, A., J. B. Fisher, and K. P. Tu, 2013: What controls the error structure in evapotranspiration models? Agric. For. Meteor., 169, 1224, https://doi.org/10.1016/j.agrformet.2012.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purdy, A. J., J. B. Fisher, M. L. Goulden, and J. S. Famiglietti, 2016: Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally. J. Geophys. Res. Biogeosci., 121, 30453059, https://doi.org/10.1002/2016JG003591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purdy, A. J., J. B. Fisher, M. L. Goulden, A. Colliander, G. Halverson, K. Tu, and J. S. Famiglietti, 2018: SMAP soil moisture improves global evapotranspiration. Remote Sens. Environ., 219, 114, https://doi.org/10.1016/j.rse.2018.09.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, L. A., 1931: Capillary conduction of liquids through porous mediums. Physics, 1, 318333, https://doi.org/10.1063/1.1745010.

  • Richey, A. S., and Coauthors, 2015: Quantifying renewable groundwater stress with GRACE. Water Resour. Res., 51, 52175238, https://doi.org/10.1002/2015WR017349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002, https://doi.org/10.1038/nature08238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2015: The observed state of the water cycle in the early twenty-first century. J. Climate, 28, 82898318, https://doi.org/10.1175/JCLI-D-14-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. S. Famiglietti, D. N. Wiese, J. T. Reager, H. K. Beaudoing, F. W. Landerer, and M. H. Lo, 2018: Emerging trends in global freshwater availability. Nature, 565, 651659, https://doi.org/10.1038/s41586-018-0831-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeghi, M., M. Tuller, A. W. Warrick, E. Babaeian, K. Parajuli, M. R. Gohardoust, and S. B. Jones, 2019: An analytical model for estimation of land surface net water flux from near-surface soil moisture observations. J. Hydrol., 570, 2637, https://doi.org/10.1016/j.jhydrol.2018.12.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Save, H., S. Bettadpur, and B. D. Tapley, 2016: High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth, 121, 75477569, https://doi.org/10.1002/2016JB013007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šimůnek, J., M. T. Van Genuchten, and M. Šejna, 2016: Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J., 15, 125, https://doi.org/10.2136/vzj2016.04.0033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, https://doi.org/10.1175/2006JAS2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tourian, M. J., N. Sneeuw, and A. Bárdossy, 2013: A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resour. Res., 49, 41744186, https://doi.org/10.1002/wrcr.20348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., E. F. Wood, C. R. Ferguson, and J. B. Fisher, 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801823, https://doi.org/10.1016/j.rse.2010.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vittucci, C., P. Ferrazzoli, Y. Kerr, P. Richaume, L. Guerriero, R. Rahmoune, and G. V. Laurin, 2016: SMOS retrieval over forests: Exploitation of optical depth and tests of soil moisture estimates. Remote Sens. Environ., 180, 115127, https://doi.org/10.1016/j.rse.2016.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., L. P. H. Van Beek, and M. F. Bierkens, 2012: Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res., 48, W00L06, https://doi.org/10.1029/2011WR010562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warrick, A. W., 1975: Analytical solutions to the one-dimensional linearized moisture flow equation for arbitrary input. Soil Sci., 120, 7984, https://doi.org/10.1097/00010694-197508000-00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigneron, J.-P., and Coauthors, 2017: Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ., 192, 238262, https://doi.org/10.1016/j.rse.2017.01.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, H. F., C. H. Lee, J. F. Chen, and W. P. Chen, 2007: Estimation of groundwater recharge using water balance model. Water Resour., 34, 153162, https://doi.org/10.1134/S0097807807020054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaussinger, F., W. Dorigo, A. Gruber, A. Tarpanelli, P. Filippucci, and L. Brocca, 2019: Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data. Hydrol. Earth Syst. Sci., 23, 897923, https://doi.org/10.5194/hess-23-897-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and M. Decker, 2009: Improving the numerical solution of soil moisture–based Richards equation for land models with a deep or shallow water table. J. Hydrometeor., 10, 308319, https://doi.org/10.1175/2008JHM1011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 89 89 52
Full Text Views 12 12 5
PDF Downloads 11 11 6

Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data

View More View Less
  • 1 Department of Civil, Environmental and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota
  • 2 USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, Maryland
  • 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • 4 Department of Plants, Soils and Climate, Utah State University, Logan, Utah
  • 5 Department of Environmental Science, The University of Arizona, Tucson, Arizona
© Get Permissions
Restricted access

Abstract

In-depth knowledge about the global patterns and dynamics of land surface net water flux (NWF) is essential for quantification of depletion and recharge of groundwater resources. Net water flux cannot be directly measured, and its estimates as a residual of individual surface flux components often suffer from mass conservation errors due to accumulated systematic biases of individual fluxes. Here, for the first time, we provide direct estimates of global NWF based on near-surface satellite soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites. We apply a recently developed analytical model derived via inversion of the linearized Richards’ equation. The model is parsimonious, yet yields unbiased estimates of long-term cumulative NWF that is generally well correlated with the terrestrial water storage anomaly from the Gravity Recovery and Climate Experiment (GRACE) satellite. In addition, in conjunction with precipitation and evapotranspiration retrievals, the resultant NWF estimates provide a new means for retrieving global infiltration and runoff from satellite observations. However, the efficacy of the proposed approach over densely vegetated regions is questionable, due to the uncertainty of the satellite soil moisture retrievals and the lack of explicit parameterization of transpiration by deeply rooted plants in the proposed model. Future research is needed to advance this modeling paradigm to explicitly account for plant transpiration.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Morteza Sadeghi, msadeghi@umn.edu

Abstract

In-depth knowledge about the global patterns and dynamics of land surface net water flux (NWF) is essential for quantification of depletion and recharge of groundwater resources. Net water flux cannot be directly measured, and its estimates as a residual of individual surface flux components often suffer from mass conservation errors due to accumulated systematic biases of individual fluxes. Here, for the first time, we provide direct estimates of global NWF based on near-surface satellite soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites. We apply a recently developed analytical model derived via inversion of the linearized Richards’ equation. The model is parsimonious, yet yields unbiased estimates of long-term cumulative NWF that is generally well correlated with the terrestrial water storage anomaly from the Gravity Recovery and Climate Experiment (GRACE) satellite. In addition, in conjunction with precipitation and evapotranspiration retrievals, the resultant NWF estimates provide a new means for retrieving global infiltration and runoff from satellite observations. However, the efficacy of the proposed approach over densely vegetated regions is questionable, due to the uncertainty of the satellite soil moisture retrievals and the lack of explicit parameterization of transpiration by deeply rooted plants in the proposed model. Future research is needed to advance this modeling paradigm to explicitly account for plant transpiration.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Morteza Sadeghi, msadeghi@umn.edu
Save