• Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2020: Atmospheric river. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Atmospheric_river.

  • Barlow, M., and Coauthors, 2019: North American extreme precipitation events and related large-scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 53, 68356875, https://doi.org/10.1007/s00382-019-04958-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, D. A., and Coauthors, 2019: Investigating the causes of increased twentieth-century fall precipitation over the southeastern United States. J. Climate, 32, 575590, https://doi.org/10.1175/JCLI-D-18-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debbage, N., P. Miller, S. Poore, K. Morano, T. Mote, and J. M. Shepard, 2017: A climatology of atmospheric river interactions with the southeastern United States coastline. Int. J. Climatol., 37, 40774091, https://doi.org/10.1002/joc.5000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., J. L. Evans, P. Y. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000a: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417425, https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000b: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, https://doi.org/10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2017: Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA, 114, 12 68112 684, https://doi.org/10.1073/pnas.1716222114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Coauthors, 1999: Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243283, https://doi.org/10.1023/A:1005432803188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, and T. R. Karl, 2001: Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Amer. Meteor. Soc., 82, 219246, https://doi.org/10.1175/1520-0477(2001)082<0219:HPAHSI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and V. E. Kousky, 2013: Changes in observed daily precipitation over the United States between 1950–79 and 1980–2009. J. Hydrometeor., 14, 105121, https://doi.org/10.1175/JHM-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

    • Search Google Scholar
    • Export Citation
  • Iwashima, T., and R. Yamamoto, 1993: A statistical analysis of the extreme events : Long-term trend of heavy daily precipitation. J. Meteor. Soc. Japan, 71, 637640, https://doi.org/10.2151/jmsj1965.71.5_637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenner, L., 2019: September 2019–NASA estimates Imelda’s extreme rainfall. NASA blog post, accessed 3 February 2020, https://blogs.nasa.gov/hurricanes/tag/imelda-2019/.

  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231242, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., R. W. Knight, D. R. Easterling, and R. G. Quayle, 1996: Indices of climate change for the United States. Bull. Amer. Meteor. Soc., 77, 279292, https://doi.org/10.1175/1520-0477(1996)077<0279:IOCCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 2003: North American trends in extreme precipitation. Nat. Hazards, 29, 291305, https://doi.org/10.1023/A:1023694115864.

  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527, https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, https://doi.org/10.1029/2010GL045164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., and Coauthors, 2016: Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. D. Dettinger, 2002: Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeor., 3, 1325, https://doi.org/10.1175/1525-7541(2002)003<0013:PMAPOY>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. K., C. F. Miniat, R. M. Wooten, and A. P. Barros, 2019: An expanded investigation of atmospheric rivers in the southern Appalachian Mountains and their connections to landslides. Atmosphere, 10, 71, https://doi.org/10.3390/atmos10020071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer, 2008: Stationarity is dead: Whither water management? Science, 319, 573574, https://doi.org/10.1126/science.1151915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, https://doi.org/10.1175/MWR-D-11-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Hurricane Center, 2018: Costliest U.S. tropical cyclones tables update. Accessed 5 January 2019, https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf.

  • Pacheco, S. E., 2017: Hurricane Harvey and climate change: The need for policy to protect children. Pediatr. Res., 83, 910, https://doi.org/10.1038/pr.2017.280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. D. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risser, M. D., and M. F. Wehner, 2017: Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett., 44, 12 45712 464, https://doi.org/10.1002/2017GL075888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, E. E., B. C. Massey, and E. H. Chin, 1987: Floods in Central Texas, August 1–4, 1978. USGS Professional Paper 1332, 39 pp., https://doi.org/10.3133/pp1332.

    • Crossref
    • Export Citation
  • Slinskey, E. A., P. C. Loikith, D. E. Waliser, and A. Goodman, 2019: An extreme precipitation categorization scheme and its observational uncertainty over the continental United States. J. Hydrometeor., 20, 10291052, https://doi.org/10.1175/JHM-D-18-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stegner, W., 1953: Beyond the Hundredth Meridian—John Wesley Powell and the Second Opening of the West. Penguin Books, 496 pp.

  • USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I. D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 470 pp., https://doi.org/10.7930/J0J964J6.

    • Crossref
    • Export Citation
  • Vahedifard, F., A. AghaKouchak, E. Ragno, S. Shahrokhabadi, and I. Mallakpour, 2017: Lessons from the Oroville dam. Science, 355, 11391140, https://doi.org/10.1126/science.aan0171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., and Coauthors, 2017: Attribution of extreme rainfall from hurricane Harvey, August 2017. Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., K. Miller, M. D. Dettinger, R. Cifelli, D. Curtis, A. Dufour, J. R. Olsen, and A. M. Wilson, 2019: Hydroclimatic extremes as challenges for the water management community: Lessons from Oroville dam and Hurricane Harvey. Bull. Amer. Meteor. Soc., 100, S9S14, https://doi.org/10.1175/BAMS-D-18-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y. S., L. Zhao, J.-H. Yoon, P. Klotzbach, and R. R. Gillies, 2018: Quantitative attribution of climate effects on Hurricane Harvey’s extreme rainfall in Texas. Environ. Res. Lett., 13, 054014, https://doi.org/10.1088/1748-9326/aabb85.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., B. J. Moore, D. J. Gottas, and P. J. Neiman, 2019: Winter storm conditions leading to excessive runoff above California’s Oroville Dam during January and February 2019. Bull. Amer. Meteor. Soc., 100, 5570, https://doi.org/10.1175/BAMS-D-18-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 28 28 22
Full Text Views 3 3 3
PDF Downloads 5 5 5

Recent Changes in United States Extreme 3-Day Precipitation Using the R-CAT Scale

View More View Less
  • 1 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • 2 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and U.S. Geological Survey, Carson City, Nevada
© Get Permissions
Restricted access

Abstract

Extraordinary precipitation events have impacted the United States recently, including Hurricanes Harvey (2017) and Florence (2018), with 3-day precipitation totals larger than any others reported in the United States during the past 70 years. The rainfall category (R-CAT) scaling method is used here to document extreme precipitation events and test for trends nationally. The R-CAT scale uses thresholds of 3-day precipitation total in 100-mm increments (starting with 200 mm) that do not vary temporally or geographically, allowing for simple, intuitive comparisons of extremes over space and time. The paper that introduced the scale only required levels 1–4 to represent historical extremes, finding that R-CATs 3–4 strike the conterminous United States about as frequently as EF 4–5 tornadoes or category 3–5 hurricanes. Remarkably, Florence and Harvey require extending the scale to R-CAT 7 and 9, respectively. Trend analyses of annual maximum 3-day totals (1950–2019) here identify significant increases in the eastern United States, along with declines in Northern California and Oregon. Consistent with these results, R-CAT storms have been more frequent in the eastern, and less frequent in western, United States during the past decade compared to 1950–2008. Tropical storms dominate R-CAT events along the southeastern coast and East Coast with surprising contributions from atmospheric rivers, while atmospheric rivers completely dominate along the West Coast.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maryam A. Lamjiri, masgaril@ucsd.edu

Abstract

Extraordinary precipitation events have impacted the United States recently, including Hurricanes Harvey (2017) and Florence (2018), with 3-day precipitation totals larger than any others reported in the United States during the past 70 years. The rainfall category (R-CAT) scaling method is used here to document extreme precipitation events and test for trends nationally. The R-CAT scale uses thresholds of 3-day precipitation total in 100-mm increments (starting with 200 mm) that do not vary temporally or geographically, allowing for simple, intuitive comparisons of extremes over space and time. The paper that introduced the scale only required levels 1–4 to represent historical extremes, finding that R-CATs 3–4 strike the conterminous United States about as frequently as EF 4–5 tornadoes or category 3–5 hurricanes. Remarkably, Florence and Harvey require extending the scale to R-CAT 7 and 9, respectively. Trend analyses of annual maximum 3-day totals (1950–2019) here identify significant increases in the eastern United States, along with declines in Northern California and Oregon. Consistent with these results, R-CAT storms have been more frequent in the eastern, and less frequent in western, United States during the past decade compared to 1950–2008. Tropical storms dominate R-CAT events along the southeastern coast and East Coast with surprising contributions from atmospheric rivers, while atmospheric rivers completely dominate along the West Coast.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maryam A. Lamjiri, masgaril@ucsd.edu
Save