• Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, and P. Gonzalez, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage., 259, 660684, https://doi.org/10.1016/j.foreco.2009.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and A. Gelencsér, 2006: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 31313148, https://doi.org/10.5194/acp-6-3131-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arno, S. F., 1980: Forest fire history of the northern Rockies. J. For., 39, 726728.

  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burles, K., and S. Boon, 2011: Snowmelt energy balance in a burned forest plot, Crowsnest Pass, Alberta, Canada. Hydrol. Processes, 25, 30123029, https://doi.org/10.1002/hyp.8067.

    • Search Google Scholar
    • Export Citation
  • Delaney, I., S. Kaspari, and M. Jenkins, 2015: Black carbon concentrations in snow at Tronsen Meadow in Central Washington from 2012 to 2013: Temporal and spatial variations and the role of local forest fire activity. J. Geophys. Res. Atmos., 120, 91609172, https://doi.org/10.1002/2015jd023762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, S. J., C. M. Bitz, and M. G. Flanner, 2014: Biases in modeled surface snow BC mixing ratios in prescribed-aerosol climate model runs. Atmos. Chem. Phys., 14, 11 69711 709, https://doi.org/10.5194/acp-14-11697-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, C. J., and J. D. Bailey, 2012: Temporal dynamics and decay of coarse wood in early seral habitats of dry-mixed conifer forests in Oregon’s Eastern Cascades. For. Ecol. Manage., 276, 7181, https://doi.org/10.1016/j.foreco.2012.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eidenshink, J., B. Schwind, K. Brewer, Z. Zhu, B. Quayle, and S. Howard, 2007: A project for monitoring trends in burn severity. Fire Ecol., 3, 321, https://doi.org/10.4996/fireecology.0301003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, M. M., and Coauthors, 2010: Implications of 21st century climate change for the hydrology of Washington State. Climatic Change, 102, 225260, https://doi.org/10.1007/s10584-010-9855-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Everett, R., J. Lehmkuhl, R. Schellhaas, P. Ohlson, D. Keenum, H. Riesterer, and D. Spurbeck, 1999: Snag dynamics in a chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington State, USA. Int. J. Wildland Fire, 9, 223234, https://doi.org/10.1071/WF00011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 24812497, https://doi.org/10.5194/acp-9-2481-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flannigan, M., A. S. Cantin, W. J. De Groot, M. Wotton, A. Newbery, and L. M. Gowman, 2013: Global wildland fire season severity in the 21st century. For. Ecol. Manage., 294, 5461, https://doi.org/10.1016/j.foreco.2012.10.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, R. S., and Coauthors, 2007: A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer. Aerosol Sci. Technol., 41, 125135, https://doi.org/10.1080/02786820601118398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, K. E., and A. W. Nolin, 2016: Charred forests accelerate snow albedo decay: Parameterizing the post-fire radiative forcing on snow for three years following fire. Hydrol. Processes, 30, 38553870, https://doi.org/10.1002/hyp.10897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, K. E., A. W. Nolin, and T. R. Roth, 2013: Charred forests increase snowmelt: Effects of burned woody debris and incoming solar radiation on snow ablation. Geophys. Res. Lett., 40, 46544661, https://doi.org/10.1002/grl.50896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, K. E., J. R. McConnell, M. M. Arienzo, N. Chellman, and W. M. Calvin, 2019: Four-fold increase in solar forcing on snow in western U.S. burned forests since 1999. Nat. Commun., 10, 2026, https://doi.org/10.1038/s41467-019-09935-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568, https://doi.org/10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA, 101, 423428, https://doi.org/10.1073/pnas.2237157100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., and Coauthors, 2014: Changes in snow accumulation and ablation following the Las Conchas Forest Fire, New Mexico, USA. Ecohydrology, 7, 440452, https://doi.org/10.1002/eco.1363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspari, S. D., M. Schwikowski, M. Gysel, M. G. Flanner, S. Kang, S. Hou, and P. A. Mayewski, 2011: Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860–2000 AD. Geophys. Res. Lett., 38, 510, https://doi.org/10.1029/2010GL046096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspari, S. D., S. M. Skiles, I. Delaney, D. Dixon, and T. H. Painter, 2015: Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire. J. Geophys. Res. Atmos., 120, 27932807, https://doi.org/10.1002/2014jd022676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawler, R. R., and T. E. Link, 2011: Quantification of incoming all-wave radiation in discontinuous forest canopies with application to snowmelt prediction. Hydrol. Processes, 25, 33223331, https://doi.org/10.1002/hyp.8150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., M. L. Wrzesien, M. Durand, J. Adam, and D. P. Lettenmaier, 2017: How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett., 44, 61636172, https://doi.org/10.1002/2017GL073551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., S. Levis, and D. S. Ward, 2013: Quantifying the role of fire in the Earth system-Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 10, 22932314, https://doi.org/10.5194/bg-10-2293-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Littell, J. S., E. E. Oneil, D. McKenzie, J. A. Hicke, J. A. Lutz, R. A. Norheim, and M. M. Elsner, 2010: Forest ecosystems, disturbance, and climatic change in Washington State, USA. Climatic Change, 102, 129158, https://doi.org/10.1007/s10584-010-9858-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., S. E. Dickerson-Lange, J. A. Lutz, and N. C. Cristea, 2013: Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot-scale observations and modeling. Water Resour. Res., 49, 63566370, https://doi.org/10.1002/wrcr.20504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menking, J. A., 2013: Black carbon measurements of snow and ice using a Single Particle Soot Photometer: Method development and an AD 1852-1999 record of atmospheric black carbon from a Mount Logan ice core. Central Washington University, 200 pp., http://www.geology.cwu.edu/grad/menking/thesis/.

  • Miles, E. L., M. M. Elsner, J. S. Littell, L. W. Binder, and D. P. Lettenmaier, 2010: Assessing regional impacts and adaptation strategies for climate change: The Washington Climate Change Impacts Assessment. Climatic Change, 102, 927, https://doi.org/10.1007/s10584-010-9853-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, T., N. Moteki, S. Ohata, M. Koike, K. Goto-Azuma, Y. Miyazaki, and Y. Kondo, 2016: Improved technique for measuring the size distribution of black carbon particles in liquid water. Aerosol Sci. Technol., 50, 242254, https://doi.org/10.1080/02786826.2016.1147644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate-driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220, https://doi.org/10.1175/JCLI3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., S. Li, D. P. Lettenmaier, M. Xiao, and R. Engel, 2018: Dramatic declines in snowpack in the western US. npj Climate Atmos. Sci., 1, 2, https://doi.org/10.1038/s41612-018-0012-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., and J. W. Pomeroy, 2017: Estimation of needleleaf canopy and trunk temperatures and longwave contribution to melting snow. J. Hydrometeor., 18, 555572, https://doi.org/10.1175/JHM-D-16-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., N. P. Molotch, S. A. Margulis, P. B. Kirchner, and R. C. Bales, 2012: Influence of canopy structure and direct beam solar irradiance on snowmelt rates in a mixed conifer forest. Agric. For. Meteor., 161, 4656, https://doi.org/10.1016/j.agrformet.2012.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., J. W. Pomeroy, and T. E. Link, 2015: Variability in shortwave irradiance caused by forest gaps: Measurements, modelling, and implications for snow energetics. Agric. For. Meteor., 207, 6982, https://doi.org/10.1016/j.agrformet.2015.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., M. P. Clark, C. Liu, K. Ikeda, and R. Rasmussen, 2017: Slower snowmelt in a warmer world. Nat. Climate Change, 7, 214219, https://doi.org/10.1038/nclimate3225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolin, A. W., and C. Daly, 2006: Mapping “at risk” snow in the Pacific Northwest. J. Hydrometeor., 7, 11641171, https://doi.org/10.1175/JHM543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., S. M. Skiles, J. S. Deems, A. C. Bryant, and C. C. Landry, 2012: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour. Res., 48, W07521, https://doi.org/10.1029/2012WR011985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., S. Yang, C. Gautleir, and D. Sowle, 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Amer. Meteor. Soc., 79, 21012114, https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., S. J. Doherty, F. Li, S. T. Ruggiero, C. E. Tanner, A. E. Perring, R. S. Gao, and D. W. Fahey, 2012: Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow. Atmos. Meas. Tech., 5, 25812592, https://doi.org/10.5194/amt-5-2581-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skiles, S., and T. Painter, 2017: Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. J. Glaciol., 63, 118132, https://doi.org/10.1017/jog.2016.125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skiles, S., T. Painter, J. S. Deems, A. C. Bryant, and C. C. Landry, 2012: Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour. Res., 48, 111, https://doi.org/10.1029/2012WR011986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skiles, S., M. G. Flanner, J. Cook, M. Dumont, and T. H. Painter, 2018: Radiative forcing by light absorbing particles in snow. Nat. Climate Change, 8, 964971, https://doi.org/10.1038/s41558-018-0296-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. K., and W. C. Fischer, 1997: Fire ecology of the forest habitat types of northern Idaho. USDA Forest Service General Tech. Rep. INT-GTR-363, 142 pp., https://www.fs.fed.us/rm/pubs_int/int_gtr363.pdf.

    • Crossref
    • Export Citation
  • Torres, A., T. C. Bond, C. M. B. Lehmann, R. Subramanian, and O. L. Hadley, 2014: Measuring organic carbon and black carbon in rainwater: Evaluation of methods. Aerosol Sci. Technol., 48, 239250, https://doi.org/10.1080/02786826.2013.868596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trujillo, E., and N. P. Molotch, 2014: Snowpack regimes of the western United States. Water Resour. Res., 50, 56115623, https://doi.org/10.1002/2013WR014753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., M. J. Scott, N. Voisin, C. O. Stoeckle, A. F. Hamlet, K. E. B. Mickelson, M. M. Elsner, and D. P. Lettenmaier, 2010: Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA. Climatic Change, 102, 287317, https://doi.org/10.1007/s10584-010-9856-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 27122733, https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendl, I. A., J. A. Menking, R. Färber, M. Gysel, S. D. Kaspari, M. J. G. Laborde, and M. Schwikowski, 2014: Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer. Atmos. Meas. Tech., 7, 26672681, https://doi.org/10.5194/amt-7-2667-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, https://doi.org/10.1126/science.1128834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, R. D., 2011: Changes in snow accumulation and ablation after a fire in south-central British Columbia. Streamline Watershed Management Bulletin, Vol. 14, No. 2, FORREX, Kamloops, BC, Canada, 1–7.

    • Search Google Scholar
    • Export Citation
  • Wright, C. S., and J. K. Agee, 2004: Fire and vegetation history in the eastern Cascade Mountains, Washington. Ecol. Appl., 14, 443459, https://doi.org/10.1890/02-5349.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 42 42 24
Full Text Views 6 6 0
PDF Downloads 9 9 0

The Post-Wildfire Impact of Burn Severity and Age on Black Carbon Snow Deposition and Implications for Snow Water Resources, Cascade Range, Washington

View More View Less
  • 1 Department of Geological Sciences, Central Washington University, Ellensburg, Washington
  • 2 Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado
  • 3 Department of Geography, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

Wildfires in the snow zone affect ablation by removing forest canopy, which enhances surface solar irradiance, and depositing light absorbing particles [LAPs, such as black carbon (BC)] on the snowpack, reducing snow albedo. How variations in BC deposition affects post-wildfire snowmelt timing is poorly known and highly relevant to water resources. We present a field-based analysis of BC variability across five sites of varying burn age and burn severity in the Cascade Range, Washington State, United States. Single particle soot photometer (SP2) analyses of BC snow concentrations were used to assess the impact of BC on snow albedo, and radiative transfer modeling was used to estimate the radiative effect of BC on snowmelt. Results were compared to Snowpack Telemetry (SNOTEL) data from one site that burned in 2012 and another in a proximal unburned forest. We show that post-wildfire forests provide a significant source of BC to the snowpack, and this effect increases by an order of magnitude in regions of high versus low burn severity, and decreased by two orders of magnitude over a decade. There is a shift in the timing of snowmelt, with snow disappearance occurring on average 19 ± 9 days earlier post-wildfire (2013–19) relative to pre-wildfire (1983–2012). This study improves understanding of the connection between wildfire activity and snowmelt, which is of high relevance as climate change models project further decreases in snowpack and increases in wildfire activity in the Washington Cascades.

Corresponding author: Susan Kaspari, kaspari@geology.cwu.edu

Abstract

Wildfires in the snow zone affect ablation by removing forest canopy, which enhances surface solar irradiance, and depositing light absorbing particles [LAPs, such as black carbon (BC)] on the snowpack, reducing snow albedo. How variations in BC deposition affects post-wildfire snowmelt timing is poorly known and highly relevant to water resources. We present a field-based analysis of BC variability across five sites of varying burn age and burn severity in the Cascade Range, Washington State, United States. Single particle soot photometer (SP2) analyses of BC snow concentrations were used to assess the impact of BC on snow albedo, and radiative transfer modeling was used to estimate the radiative effect of BC on snowmelt. Results were compared to Snowpack Telemetry (SNOTEL) data from one site that burned in 2012 and another in a proximal unburned forest. We show that post-wildfire forests provide a significant source of BC to the snowpack, and this effect increases by an order of magnitude in regions of high versus low burn severity, and decreased by two orders of magnitude over a decade. There is a shift in the timing of snowmelt, with snow disappearance occurring on average 19 ± 9 days earlier post-wildfire (2013–19) relative to pre-wildfire (1983–2012). This study improves understanding of the connection between wildfire activity and snowmelt, which is of high relevance as climate change models project further decreases in snowpack and increases in wildfire activity in the Washington Cascades.

Corresponding author: Susan Kaspari, kaspari@geology.cwu.edu
Save