• Andsager, K., K. V. Beard, and N. F. Laird, 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56, 26732683, https://doi.org/10.1175/1520-0469(1999)056<2673:LMOARF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angulo-Martínez, M., and A. P. Barros, 2015: Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains. Geomorphology, 228, 2840, https://doi.org/10.1016/j.geomorph.2014.07.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1977: Terminal velocity adjustment for cloud and precipitation drops aloft. J. Atmos. Sci., 34, 12931298, https://doi.org/10.1175/1520-0469(1977)034<1293:TVAFCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1984: Oscillation models for predicting raindrop axis and backscatter ratios. Radio Sci., 19, 6774, https://doi.org/10.1029/RS019i001p00067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. R. Pruppacher, 1969: A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J. Atmos. Sci., 26, 10661072, https://doi.org/10.1175/1520-0469(1969)026<1066:ADOTTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, https://doi.org/10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and R. J. Kubesh, 1991: Laboratory measurements of small raindrop distortion. Part 2: Oscillation frequencies and modes. J. Atmos. Sci., 48, 22452264, https://doi.org/10.1175/1520-0469(1991)048<2245:LMOSRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., R. J. Kubesh, and H. T. Ochs, 1991: Laboratory measurements of small raindrop distortion. Part I: Axis ratios and fall behavior. J. Atmos. Sci., 48, 698710, https://doi.org/10.1175/1520-0469(1991)048<0698:LMOSRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1950: Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Quart. J. Roy. Meteor. Soc., 76, 302311, https://doi.org/10.1002/qj.49707632905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodini, N., J. K. Lundquist, and R. K. Newsom, 2018: Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign. Atmos. Meas. Tech., 11, 42914308, https://doi.org/10.5194/amt-11-4291-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodini, N., J. K. Lundquist, R. Krishnamurthy, M. Pekour, L. K. Berg, and A. Choukulkar, 2019: Spatial and temporal variability of turbulence dissipation rate in complex terrain. Atmos. Chem. Phys., 19, 43674382, https://doi.org/10.5194/acp-19-4367-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V., M. Thurai, and D. Baumgardner, 2018: Raindrop fall velocities from an optical array probe and 2-D video disdrometer. Atmos. Meas. Tech., 11, 13771384, https://doi.org/10.5194/amt-11-1377-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., W. A. Cooper, and V. N. Bringi, 1988: Axis ratios and oscillations of raindrops. J. Atmos. Sci., 45, 13231333, https://doi.org/10.1175/1520-0469(1988)045<1323:ARAOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdhury, M. N., F. Y. Testik, M. C. Hornack, and A. A. Khan, 2016: Free fall of water drops in laboratory rainfall simulations. Atmos. Res., 168, 158168, https://doi.org/10.1016/j.atmosres.2015.08.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S. K., S. Simon, Y. K. Kolte, U. V. M. Krishna, S. M. Deshpande, and A. Hazra, 2020: Investigation of raindrops fall velocity during different monsoon seasons over the western Ghats, India. Earth Space Sci., 7, e2019EA000956, https://doi.org/10.1029/2019EA000956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, P. A., 2015: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, 647 pp.

  • Dingle, N., and Y. Lee, 1972: Terminal fallspeeds of raindrops. J. Appl. Meteor., 11, 877879, https://doi.org/10.1175/1520-0450(1972)011<0877:TFOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. Du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253, https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, A. W., 1975: An approximation for the shapes of large raindrops. J. Appl. Meteor., 14, 15781583, https://doi.org/10.1175/1520-0450(1975)014<1578:AAFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G. J., V. N. Bringi, and M. Thurai, 2008: Orientation angle distributions of drops after an 80-m fall using a 2D video disdrometer. J. Atmos. Oceanic Technol., 25, 17171723, https://doi.org/10.1175/2008JTECHA1075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. L., A. B. Kostinski, and A. R. Jameson, 2014: Further evidence for superterminal raindrops. Geophys. Res. Lett., 41, 69146918, https://doi.org/10.1002/2014GL061397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzuki, W. L. Randeu, T. Kozu, T. Shimomai, H. Hashiguchi, and M. Schönhuber, 2013: Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-video disdrometer measurement. Atmos. Res., 119, 2337, https://doi.org/10.1016/j.atmosres.2011.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. E., 1954: The shape and aerodynamics of large raindrops. J. Meteor., 11, 478494, https://doi.org/10.1175/1520-0469(1954)011<0478:TSAAOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montero-Martínez, G., and F. García-García, 2016: On the behaviour of raindrop fall speed due to wind. Quart. J. Roy. Meteor. Soc., 142, 20132020, https://doi.org/10.1002/qj.2794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montero-Martínez, G., A. B. Kostinski, R. A. Shaw, and F. García-García, 2009: Do all raindrops fall at terminal speed? Geophys. Res. Lett., 36, L11818, https://doi.org/10.1029/2008GL037111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., R. D. Sharman, and J. K. Lundquist, 2018: Turbulence dissipation rate in the atmospheric boundary layer: Observations and WRF mesoscale modeling during the XPIA field campaign. Mon. Wea. Rev., 146, 351371, https://doi.org/10.1175/MWR-D-17-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2020: Storm Event Database. National Centers for Environmental Information, accessed 9 May 2022, https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=891257.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2022: Radar Data, version 3.1.0. National Centers for Environmental Information, accessed 9 May 2022, https://www.ncei.noaa.gov/maps/radar/.

    • Search Google Scholar
    • Export Citation
  • OTT-Hydromet, 2016: Operating instructions precipitation gauge OTT Pluvio2 L. 60 pp., https://images.otthydromet.com/asset-get.download.jsa?code=299718.

    • Search Google Scholar
    • Export Citation
  • OTT-Hydromet, 2017: Operating instructions present weather sensor OTT Parsivel2. 52 pp., https://www.ott.com/download/operating-instructions-present-weather-sensor-ott-parsivel2-with-screen-heating-1/.

    • Search Google Scholar
    • Export Citation
  • Pei, B., F. Y. Testik, and M. Gebremichael, 2014: Impacts of raindrop fall velocity and axis ratio errors on dual-polarization radar rainfall estimation. J. Hydrometeor., 15, 18491861, https://doi.org/10.1175/JHM-D-13-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piper, M., and J. K. Lundquist, 2004: Surface layer turbulence measurements during a frontal passage. J. Atmos. Sci., 61, 17681780, https://doi.org/10.1175/1520-0469(2004)061<1768:SLTMDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollock, M. D., and Coauthors, 2018: Quantifying and mitigating wind‐induced undercatch in rainfall measurements. Water Resour. Res., 54, 38633875, https://doi.org/10.1029/2017WR022421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and K. V. Beard, 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 96, 247256, https://doi.org/10.1002/qj.49709640807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. L. Pitter, 1971: A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci., 28, 8694, https://doi.org/10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahman, K., and F. Y. Testik, 2020: Shapes and fall speeds of freezing and frozen raindrops. J. Hydrometeor., 21, 13111331, https://doi.org/10.1175/JHM-D-19-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugioka, K. I., and S. Komori, 2007: Drag and lift forces acting on a spherical water droplet in homogeneous linear shear air flow. J. Fluid Mech., 570, 155175, https://doi.org/10.1017/S0022112006003065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suh, Y., and C. Lee, 2013: A numerical method for the calculation of drag and lift of a deformable droplet in shear flow. J. Comput. Phys., 241, 3557, https://doi.org/10.1016/j.jcp.2013.01.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suomi, I., and T. Vihma, 2018: Wind gust measurement techniques—From traditional anemometry to new possibilities. Sensors, 18, 1300, https://doi.org/10.3390/s18041300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., and A. P. Barros, 2007: Toward elucidating the microstructure of warm rainfall: A survey. Rev. Geophys., 45, RG2003, https://doi.org/10.1029/2005RG000182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., and M. Gebremichael, Eds., 2010: Rainfall: State of the Science. Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 287 pp.

    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., and M. K. Rahman, 2016: High-speed optical disdrometer for rainfall microphysical observations. J. Atmos. Oceanic Technol., 33, 231243, https://doi.org/10.1175/JTECH-D-15-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., and M. K. Rahman, 2017: First in situ observations of binary raindrop collisions. Geophys. Res. Lett., 44, 11751181, https://doi.org/10.1002/2017GL072516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., A. P. Barros, and L. F. Bliven, 2006: Field observations of multimode raindrop oscillations by high-speed imaging. J. Atmos. Sci., 63, 26632668, https://doi.org/10.1175/JAS3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., 1998: Eta model storm-relative winds associated with tornadic and nontornadic supercells. Wea. Forecasting, 13, 125137, https://doi.org/10.1175/1520-0434(1998)013<0125:EMSRWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from a 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978, https://doi.org/10.1175/JTECH1767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. Bringi, 2009: Shapes and orientations of raindrops from 2D-video disdrometer, polarimetric radar and a wind-tunnel study. Third European Conf. on Antennas and Propagation, Berlin, Germany, IEEE, 3438–3442, https://ieeexplore.ieee.org/document/5068335.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., G. J. Huang, V. N. Bringi, W. L. Randeu, and M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, https://doi.org/10.1175/JTECH2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., W. A. Petersen, A. Tokay, C. Schultz, and P. Gatlin, 2011: Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv. Geosci., 30, 39, https://doi.org/10.5194/adgeo-30-3-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, W. A. Petersen, and P. N. Gatlin, 2013: Drop shapes and fall speeds in rain: Two contrasting examples. J. Appl. Meteor. Climatol., 52, 25672581, https://doi.org/10.1175/JAMC-D-12-085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and K. V. Beard, 1996: A field study of raindrop oscillations. Part I: Observation of size spectra and evaluation of oscillation causes. J. Appl. Meteor., 35, 16711687, https://doi.org/10.1175/1520-0450(1996)035<1671:AFSORO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., and H. R. Pruppacher, 1977: Acceleration to terminal velocity of cloud and raindrops. J. Appl. Meteor., 16, 275280, https://doi.org/10.1175/1520-0450(1977)016<0275:ATTVOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, https://doi.org/10.1023/A:1018966204465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wobus, H. B., F. W. Murray, and L. R. Koenig, 1971: Calculation of the terminal velocity of water drops. J. Appl. Meteor., 10, 751754, https://doi.org/10.1175/1520-0450(1971)010<0751:COTTVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 74 74 74
Full Text Views 22 22 22
PDF Downloads 26 26 26

Rainfall Microphysics Influenced by Strong Wind during a Tornadic Storm

View More View Less
  • 1 aCivil and Environmental Engineering Department, The University of Texas at San Antonio, San Antonio, Texas
Restricted access

Abstract

Rainfall microphysical characteristics including raindrop fall speed, axis ratio, and canting angle were measured through field observations by using a high-speed optical disdrometer (HOD) during and after tornadic severe storm passage. High and low wind and turbulence characteristics were observed during and after passage, respectively, which provided an opportunity to compare the effects of the different wind and turbulence characteristics on raindrop characteristics. During passage, 9.4% of the raindrops larger than 1.0 mm in volume equivalent diameter (D) were identified as subterminal, whereas only 0.5% of the raindrops of the same size were detected as subterminal after passage. Contrary to findings in literature, we could not find any distinct superterminal fall speed behavior for raindrops with D < 1.0 mm during or after passage. For raindrops with D > 2.0 mm, deviations of the axis ratio distribution from the predicted distribution for the equilibrium raindrops were observed, and the deviations during passage were larger than those after passage. The deviations of the axis ratio distributions from the predicted distributions for the equilibrium raindrops were also observed for midsized (1.0 < D < 2.0 mm) raindrops; however, these deviations during and after passage were of similar magnitude. The canting angle distribution for raindrops with D > 2.0 mm was found to have the mean value of approximately 0° both during and after passage and the standard deviation values of 24.7° during passage and 13.6° after passage. This study shows the clear influence of wind on various rainfall microphysical characteristics and documents the observed value ranges of these characteristics under strong wind that are of importance for a number of rainfall applications, including radar rainfall retrievals and rainfall modeling.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Firat Y. Testik, firat.testik@utsa.edu

Abstract

Rainfall microphysical characteristics including raindrop fall speed, axis ratio, and canting angle were measured through field observations by using a high-speed optical disdrometer (HOD) during and after tornadic severe storm passage. High and low wind and turbulence characteristics were observed during and after passage, respectively, which provided an opportunity to compare the effects of the different wind and turbulence characteristics on raindrop characteristics. During passage, 9.4% of the raindrops larger than 1.0 mm in volume equivalent diameter (D) were identified as subterminal, whereas only 0.5% of the raindrops of the same size were detected as subterminal after passage. Contrary to findings in literature, we could not find any distinct superterminal fall speed behavior for raindrops with D < 1.0 mm during or after passage. For raindrops with D > 2.0 mm, deviations of the axis ratio distribution from the predicted distribution for the equilibrium raindrops were observed, and the deviations during passage were larger than those after passage. The deviations of the axis ratio distributions from the predicted distributions for the equilibrium raindrops were also observed for midsized (1.0 < D < 2.0 mm) raindrops; however, these deviations during and after passage were of similar magnitude. The canting angle distribution for raindrops with D > 2.0 mm was found to have the mean value of approximately 0° both during and after passage and the standard deviation values of 24.7° during passage and 13.6° after passage. This study shows the clear influence of wind on various rainfall microphysical characteristics and documents the observed value ranges of these characteristics under strong wind that are of importance for a number of rainfall applications, including radar rainfall retrievals and rainfall modeling.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Firat Y. Testik, firat.testik@utsa.edu
Save