• Abtew, W., and A. Melesse, 2012: Evaporation and Evapotranspiration: Measurements and Estimations. Springer, 219 pp.

  • Aguirre, F., O. Hartogensis, F. Meza, and F. Suárez, 2022: Refinements and analysis of the optical-microwave scintillometry method applied to measurements over a vineyard in Chile. Water, 14, 474, https://doi.org/10.3390/w14030474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyrich, F., and Coauthors, 2012: Towards a validation of scintillometer measurements: The LITFASS-2009 experiment. Bound.-Layer Meteor., 144, 83112, https://doi.org/10.1007/s10546-012-9715-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blin, N., M. Hausner, S. Leray, C. Lowry, and F. Suárez, 2021: Potential impacts of climate change on an aquifer in the arid Altiplano, northern Chile: The case of the protected wetlands of the Salar del Huasco basin. J. Hydrol. Reg. Stud., 39, 100996, https://doi.org/10.1016/j.ejrh.2022.100996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, https://doi.org/10.1002/qj.49708135027.

  • de la Fuente, A., C. Meruane, and F. Suarez, 2021: Long-term spatiotemporal variability in high Andean wetlands in northern Chile. Sci. Total Environ., 756, 143830, https://doi.org/10.1016/j.scitotenv.2020.143830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, A., 1967: The turbulent transport of heat and water vapour in an unstable atmosphere. Quart. J. Roy. Meteor. Soc., 93, 501508, https://doi.org/10.1002/qj.49709339809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J., and H. De Bruin, 2011: The effective height of a two-wavelength scintillometer system. Bound.-Layer Meteor., 141, 165177, https://doi.org/10.1007/s10546-011-9634-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J., D. McNeil, J. Finch, T. Murray, R. Harding, H. Ward, and A. Verhoef, 2012: Determination of turbulent heat fluxes using a large aperture scintillometer over undulating mixed agricultural terrain. Agric. For. Meteor., 166, 221233, https://doi.org/10.1016/j.agrformet.2012.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fratini, G., and M. Mauder, 2014: Towards a consistent eddy-covariance processing: An intercomparison of EddyPro and TK3. Atmos. Meas. Tech., 7, 22732281, https://doi.org/10.5194/amt-7-2273-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, A., M. Astill, K. McAneney, and J. Nieveen, 2001: Path-averaged surface fluxes determined from infrared and microwave scintillometers. Agric. For. Meteor., 109, 233247, https://doi.org/10.1016/S0168-1923(01)00262-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, P.-F., X.-S. Wang, and J.-Z. Wang, 2019: Using large-aperture scintillometer to estimate lake-water evaporation and heat fluxes in the Badain Jaran Desert, China. Water, 11, 2575, https://doi.org/10.3390/w11122575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartogensis, O. K., 2006: Exploring scintillometry in the stable atmospheric surface layer. Ph.D. thesis, Wageningen University, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Hartogensis, O. K., C. Watts, J. Rodriguez, and H. De Bruin, 2003: Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J. Hydrometeor., 4, 915928, https://doi.org/10.1175/1525-7541(2003)004<0915:DOAEHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, R., 1997: Algorithms for obtaining atmospheric surface-layer fluxes from scintillation measurements. J. Atmos. Oceanic Technol., 14, 456467, https://doi.org/10.1175/1520-0426(1997)014<0456:AFOASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, R., S. Clifford, and R. S. Lawrence, 1980: Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations. J. Opt. Soc. Amer., 70, 11921205, https://doi.org/10.1364/JOSA.70.001192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horst, T., and J. Weil, 1992: Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound.-Layer Meteor., 59, 279296, https://doi.org/10.1007/BF00119817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isabelle, P.-E., D. F. Nadeau, A. O. Perelet, E. R. Pardyjak, A. N. Rousseau, and F. Anctil, 2020: Application and evaluation of a two-wavelength scintillometry system for operation in a complex shallow boreal-forested valley. Bound.-Layer Meteor., 174, 341370, https://doi.org/10.1007/s10546-019-00488-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohsiek, W., and M. Herben, 1983: Evaporation derived from optical and radio-wave scintillation. Appl. Opt., 22, 25662570, https://doi.org/10.1364/AO.22.002566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS, 30, 301305.

    • Search Google Scholar
    • Export Citation
  • Kooijmans, L. M., and O. K. Hartogensis, 2016: Surface-layer similarity functions for dissipation rate and structure parameters of temperature and humidity based on eleven field experiments. Bound.-Layer Meteor., 160, 501527, https://doi.org/10.1007/s10546-016-0152-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagouarde, J.-P., J.-M. Bonnefond, Y. Kerr, K. McAneney, and M. Irvine, 2002: Integrated sensible heat flux measurements of a two-surface composite landscape using scintillometry. Bound.-Layer Meteor., 105, 535, https://doi.org/10.1023/A:1019631428921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leclerc, M. Y., and T. Foken, 2014: Footprints in Micrometeorology and Ecology. Springer, 258 pp.

  • Li, D., E. Bou-Zeid, and H. A. De Bruin, 2012: Monin–Obukhov similarity functions for the structure parameters of temperature and humidity. Bound.-Layer Meteor., 145, 4567, https://doi.org/10.1007/s10546-011-9660-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobos-Roco, F., O. Hartogensis, J. Vilà-Guerau de Arellano, A. de la Fuente, R. Muñoz, J. Rutllant, and F. Suárez, 2021: Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert. Atmos. Chem. Phys., 21, 91259150, https://doi.org/10.5194/acp-21-9125-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lüdi, A., F. Beyrich, and C. Matzler, 2005: Determination of the turbulent temperature–humidity correlation from scintillometric measurements. Bound.-Layer Meteor., 117, 525550, https://doi.org/10.1007/s10546-005-1751-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Sun, N. O. Jensen, H. Jørgensen, E. Pardyjak, and H. Fernando, 2001: Determination of the surface drag coefficient. Bound.-Layer Meteor., 99, 249276, https://doi.org/10.1023/A:1018915228170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massman, W., 2000: A simple method for estimating frequency response corrections for eddy covariance systems. Agric. For. Meteor., 104, 185198, https://doi.org/10.1016/S0168-1923(00)00164-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijninger, W., O. Hartogensis, W. Kohsiek, J. Hoedjes, R. Zuurbier, and H. De Bruin, 2002: Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface–Flevoland field experiment. Bound.-Layer Meteor., 105, 3762, https://doi.org/10.1023/A:1019647732027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijninger, W. M. L., F. Beyrich, A. Ludi, W. Kohsiek, and H. D. Bruin, 2006: Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface–A contribution to LITFASS-2003. Bound.-Layer Meteor., 121, 89110, https://doi.org/10.1007/s10546-005-9022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Munoz, R. C., M. J. Falvey, M. Arancibia, V. I. Astudillo, J. Elgueta, M. Ibarra, C. Santana, and C. Vasquez, 2018: Wind energy exploration over the Atacama Desert: A numerical model–guided observational program. Bull. Amer. Meteor. Soc., 99, 20792092, https://doi.org/10.1175/BAMS-D-17-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neftel, A., C. Spirig, and C. Ammann, 2008: Application and test of a simple tool for operational footprint evaluations. Environ. Pollut., 152, 644652, https://doi.org/10.1016/j.envpol.2007.06.062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordbo, A., S. Launiainen, I. Mammarella, M. Lepparanta, J. Huotari, A. Ojala, and T. Vesala, 2011: Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J. Geophys. Res., 116, D02119, https://doi.org/10.1029/2010JD014542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oroud, I., 1999: Temperature and evaporation dynamics of saline solutions. J. Hydrol., 226, 110, https://doi.org/10.1016/S0022-1694(99)00138-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosen, M. R., 1994: The importance of groundwater in playas: A review of playa classifications and the sedimentology and hydrology of playas. Paleoclimate and Basin Evolution of Playa Systems, GSA Special Papers, Vol. 289, Geological Society of America, https://doi.org/10.1130/SPE289-p1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutllant, J. A., H. Fuenzalida, and P. Aceituno, 2003: Climate dynamics along the arid northern coast of Chile: The 1997–1998 Dinaica del Clima de la region de Antofagasta (DICLIMA) experiment. J. Geophys. Res., 108, 4538, https://doi.org/10.1029/2002JD003357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salhotra, A. M., E. E. Adams, and D. R. Harleman, 1985: Effect of salinity and ionic composition on evaporation: Analysis of Dead Sea evaporation pans. Water Resour. Res., 21, 13361344, https://doi.org/10.1029/WR021i009p01336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuepp, P., M. Leclerc, J. MacPherson, and R. Desjardins, 1990: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound.-Layer Meteor., 50, 355373, https://doi.org/10.1007/BF00120530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 2008: Evapotranspiration measurement methods. Southwest Hydrol., 7, 2223.

  • Stoffer, R., 2018: Revisiting raw data processing of combined optical-microwave scintillometers. M.S. thesis, Wageningen University, 59 pp.

    • Search Google Scholar
    • Export Citation
  • Suarez, F., F. Lobos-Roco, A. De La Fuente, J. Vila-Guerau de Arellano, A. Prieto, C. Meruane, and O. Hartogensis, 2020: E-data: A comprehensive field campaign to investigate evaporation enhanced by advection in the hyper-arid Altiplano. Water, 12, 745, https://doi.org/10.3390/w12030745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanny, J., S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, B. Teltch, and M. Parlange, 2008: Evaporation from a small water reservoir: Direct measurements and estimates. J. Hydrol., 351, 218229, https://doi.org/10.1016/j.jhydrol.2007.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatarski, V. I., 1961: Wave Propagation in a Turbulent Medium. McGraw-Hill, 285 pp.

  • Uribe, J., J. F. Munoz, J. Gironas, R. Oyarzun, E. Aguirre, and R. Aravena, 2015: Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall runoff model: Salar del Huasco basin, Chile. Hydrogeol. J., 23, 15351551, https://doi.org/10.1007/s10040-015-1300-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T.-i., G. Ochs, and S. Clifford, 1978: A saturation-resistant optical scintillometer to measure CN2. J. Opt. Soc. Amer., 68, 334338, https://doi.org/10.1364/JOSA.68.000334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, H., J. Evans, O. Hartogensis, A. Moene, H. De Bruin, and C. Grimmond, 2013: A critical revision of the estimation of the latent heat flux from two-wavelength scintillometry. Quart. J. Roy. Meteor. Soc., 139, 19121922, https://doi.org/10.1002/qj.2076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, H., J. G. Evans, C. S. B. Grimmond, and J. Bradford, 2015: Infrared and millimetre-wave scintillometry in the suburban environment–Part 1: Structure parameters. Atmos. Meas. Tech., 8, 13851405, https://doi.org/10.5194/amt-8-1385-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1976: An objective exposure correction method for average wind speeds measured at a sheltered location. Quart. J. Roy. Meteor. Soc., 102, 241253, https://doi.org/10.1002/qj.49710243119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczack, J., S. Oncley, and S. Stage, 2001: Sonic anemometers tilt corrections algorithms. Bound.-Layer Meteor., 99, 127150, https://doi.org/10.1023/A:1018966204465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J., Y. Izumi, and S. A. Collins, 1971: Behavior of the refractive-index-structure parameter near the ground. J. Opt. Soc. Amer., 61, 16461650, https://doi.org/10.1364/JOSA.61.001646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Zhang, and P. Meng, 2021: Estimation of kilometer-scale heat fluxes over a hilly area in northern China using an optical-microwave scintillometer. Agric. Water Manage., 244, 106582, https://doi.org/10.1016/j.agwat.2020.106582.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 172 172 61
Full Text Views 37 37 12
PDF Downloads 43 43 16

Optical Microwave Scintillometer Evaporation Measurements over a Saline Lake in a Heterogeneous Setting in the Atacama Desert

View More View Less
  • 1 aMeteorology and Air Quality, Wageningen University, Wageningen, Netherlands
  • | 2 bDepartamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile
  • | 3 cDepartamento de Ingeniería Civil, Universidad de Chile, Santiago, Chile
  • | 4 dCentro de Desarrollo Urbano Sustentable, Santiago, Chile
  • | 5 eCentro de Excelencia en Geotermia de los Andes, Santiago, Chile
Restricted access

Abstract

Estimating lake evaporation is a challenge due to both practical considerations and theoretical assumptions embedded in indirect methods. For the first time, we evaluated measurements from an optical microwave scintillometer (OMS) system over an open-water body under arid conditions. The OMS is a line-of-sight remote sensing technique that can be used to measure the sensible and latent heat fluxes over horizontal areas with pathlengths ranging from 0.5 to 10 km. We installed an OMS at a saline lake surrounded by a wet-salt crust in the Salar del Huasco, a heterogeneous desert landscape in the Atacama Desert. As a reference, we used eddy covariance systems installed over the two main surfaces in the OMS footprint. We performed a footprint analysis to reconstruct the surface contribution to the OMS measured fluxes (80% water and 20% wet salt). Furthermore, we investigated the applicability of the Monin–Obukhov similarity theory (MOST), which was needed to infer fluxes from the OMS-derived structure parameters to the fluxes. The OMS structure parameters and MOST were compromised, which we mitigated by fitting MOST coefficients to the site conditions. We argue that the MOST deviation from values found in the literature is due to the effects of the surface heterogeneity and the nonlocal processes induced by regional circulation. With the available dataset we were not able to rule out instrument issues, such as additional fluctuations to the scintillation signal due to absorption or the effect of vibration in high-wind conditions. The adjusted MOST coefficients lowered by a factor of 1.64 compared to using standard MOST coefficients. For H and LυE, we obtained zero-intercept linear regressions with correlations, R2, of 0.92 and 0.96, respectively. We conclude that advances in MOST are needed to successfully apply the OMS method in landscapes characterized by complex heterogeneity such as the Salar del Huasco.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Felipe Lobos-Roco, felipe.lobosroco@wur.nl, felipe.lobos.roco@gmail.com

Abstract

Estimating lake evaporation is a challenge due to both practical considerations and theoretical assumptions embedded in indirect methods. For the first time, we evaluated measurements from an optical microwave scintillometer (OMS) system over an open-water body under arid conditions. The OMS is a line-of-sight remote sensing technique that can be used to measure the sensible and latent heat fluxes over horizontal areas with pathlengths ranging from 0.5 to 10 km. We installed an OMS at a saline lake surrounded by a wet-salt crust in the Salar del Huasco, a heterogeneous desert landscape in the Atacama Desert. As a reference, we used eddy covariance systems installed over the two main surfaces in the OMS footprint. We performed a footprint analysis to reconstruct the surface contribution to the OMS measured fluxes (80% water and 20% wet salt). Furthermore, we investigated the applicability of the Monin–Obukhov similarity theory (MOST), which was needed to infer fluxes from the OMS-derived structure parameters to the fluxes. The OMS structure parameters and MOST were compromised, which we mitigated by fitting MOST coefficients to the site conditions. We argue that the MOST deviation from values found in the literature is due to the effects of the surface heterogeneity and the nonlocal processes induced by regional circulation. With the available dataset we were not able to rule out instrument issues, such as additional fluctuations to the scintillation signal due to absorption or the effect of vibration in high-wind conditions. The adjusted MOST coefficients lowered by a factor of 1.64 compared to using standard MOST coefficients. For H and LυE, we obtained zero-intercept linear regressions with correlations, R2, of 0.92 and 0.96, respectively. We conclude that advances in MOST are needed to successfully apply the OMS method in landscapes characterized by complex heterogeneity such as the Salar del Huasco.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Felipe Lobos-Roco, felipe.lobosroco@wur.nl, felipe.lobos.roco@gmail.com
Save