• Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, H., and V. Mishra, 2018: Increase in subdaily precipitation extremes in India under 1.5° and 2.0°C warming worlds. Geophys. Res. Lett., 45, 69726982, https://doi.org/10.1029/2018GL078689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, H., P. Modi, and V. Mishra, 2019: Increased flood risk in Indian sub-continent under the warming climate. Wea. Climate Extremes, 25, 100212, https://doi.org/10.1016/j.wace.2019.100212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anele, A. O., E. Todini, Y. Hamam, and A. M. Abu-Mahfouz, 2018: Predictive uncertainty estimation in water demand forecasting using the model conditional processor. Water, 10, 475, https://doi.org/10.3390/w10040475.

    • Crossref
    • Export Citation
  • Banerjee, R., 2009: Review of water governance in the Narmada river basin. Society for Promotion of Wastelands Development, Tech. Rep., 40 pp., http://www.indiaenvironmentportal.org.in/files/Narmada_Basin_Review.pdf.

    • Crossref
    • Export Citation
  • Bellier, J., I. Zin, and G. Bontron, 2017: Sample stratification in verification of ensemble forecasts of continuous scalar variables: Potential benefits and pitfalls. Mon. Wea. Rev., 145, 35293544, https://doi.org/10.1175/MWR-D-16-0487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, J. C., Q. J. Wang, D. E. Robertson, R. Bridgart, J. Lerat, M. Li, and K. Michael, 2021: An error model for long-range ensemble forecasts of ephemeral rivers. Adv. Water Resour., 151, 103891, https://doi.org/10.1016/j.advwatres.2021.103891.

    • Crossref
    • Export Citation
  • Bogner, K., and F. Pappenberger, 2011: Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system. Water Resour. Res., 47, 7524, https://doi.org/10.1029/2010WR009137.

    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., and E. R. Vivoni, 2016: Process-based characterization of evapotranspiration sources over the North American monsoon region. Water Resour. Res., 52, 358384, https://doi.org/10.1002/2015WR017934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bremnes, J. B., 2004: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mon. Wea. Rev., 132, 338347, https://doi.org/10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briffa, K. R., P. D. Jones, J. R. Pilcher, and M. K. Hughes, 1988: Reconstructing summer temperatures in northern Fennoscandinavia back to AD 1700 using tree-ring data from Scots pine. Arct. Alp. Res., 20, 385394, https://doi.org/10.2307/1551336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. D., and D. J. Seo, 2010: A nonparametric postprocessor for bias correction of hydrometeorological and hydrologic ensemble forecasts. J. Hydrometeor., 11, 642665, https://doi.org/10.1175/2009JHM1188.1.

    • Search Google Scholar
    • Export Citation
  • Brown, J. D., and D.-J. Seo, 2013: Evaluation of a nonparametric post-processor for bias correction and uncertainty estimation of hydrologic predictions. Hydrol. Processes, 27, 83105, https://doi.org/10.1002/hyp.9263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., L. C. Bowling, and D. P. Lettenmaier, 2003: Variable infiltration capacity cold land process model updates. Global Planet. Change, 38, 151159, https://doi.org/10.1016/S0921-8181(03)00025-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, 2004: The Schaake Shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeor., 5, 243262, https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2017: The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrol. Earth Syst. Sci., 21, 34273440, https://doi.org/10.5194/hess-21-3427-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CWC, 2012: Flood forecasting and warning network performance: Appraisal Report 2011. Central Water Commission, Tech. Rep., 90 pp., http://www.cwc.gov.in/sites/default/files/Final_FFWNPAR20112_For_Printing.pdf.

    • Crossref
    • Export Citation
  • CWC, 2015: Flood forecasting and warning system in India. Proc. Regional Flood Early Warning System Workshop, Bangkok, Thailand, Regional Integrated Multi-Hazard Early Warning System, 78, https://documents1.worldbank.org/curated/en/431281468000591916/pdf/103879-WP-PUBLIC-Rimes-Workshop-Proceedings-13Jan2016.pdf.

    • Crossref
    • Export Citation
  • Day, G. N., 1985: Extended streamflow forecasting using NWSRFS. J. Water Resour. Plann. Manage., 111, 157170, https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demargne, J., and Coauthors, 2014: The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Amer. Meteor. Soc., 95, 7998, https://doi.org/10.1175/BAMS-D-12-00081.1.

    • Search Google Scholar
    • Export Citation
  • Ercolani, G., and F. Castelli, 2017: Variational assimilation of streamflow data in distributed flood forecasting. Water Resour. Res., 53, 158183, https://doi.org/10.1002/2016WR019208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, IIASA, ISRIC, ISSCAS, and JRC, 2012: H Harmonized World Soil Database (version 1.2). FAO and IIASA, http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html?sb=1.

    • Crossref
    • Export Citation
  • Fenicia, F., D. Kavetski, P. Reichert, and C. Albert, 2018: Signature-domain calibration of hydrological models using approximate Bayesian computation: Empirical analysis of fundamental properties. Water Resour. Res., 54, 39583987, https://doi.org/10.1002/2017WR021616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, K., M. Peel, A. Western, and L. Zhang, 2018: Improved rainfall-runoff calibration for drying climate: Choice of objective function. Water Resour. Res., 54, 33923408, https://doi.org/10.1029/2017WR022466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franchini, M., and M. Pacciani, 1991: Comparative analysis of several conceptual rainfall-runoff models. J. Hydrol., 122, 161219, https://doi.org/10.1016/0022-1694(91)90178-K.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., and D. B. Rubin, 1992: Inference from iterative simulation using multiple sequences. Stat. Sci., 7, 457472, https://doi.org/10.1214/ss/1177011136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelman, A., and J. Hill, 2006: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, 625 pp.

    • Crossref
    • Export Citation
  • Gharari, S., M. Hrachowitz, F. Fenicia, and H. H. G. Savenije, 2013: An approach to identify time consistent model parameters: Sub-period calibration. Hydrol. Earth Syst. Sci., 17, 149161, https://doi.org/10.5194/hess-17-149-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghimire, G. R., and W. F. Krajewski, 2020: Exploring persistence in streamflow forecasting. J. Amer. Water Resour. Assoc., 56, 542550, https://doi.org/10.1111/1752-1688.12821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbons, J. D., and S. Chakraborti, 1992: Nonparametric Statistical Inference. 4th ed. Marcel Dekker, Inc., 645 pp.

    • Crossref
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The Use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grillakis, M., A. Koutroulis, and I. Tsanis, 2018: Improving seasonal forecasts for basin scale hydrological applications. Water, 10, 1593, https://doi.org/10.3390/w10111593.

    • Crossref
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., R. Sohlberg, R. S. Defries, and J. R. Townshend, 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, https://doi.org/10.1080/014311600210209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., A. A. Bradley, and S. S. Schwartz, 2007: Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrol. Earth Syst. Sci., 11, 939950, https://doi.org/10.5194/hess-11-939-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, M. D., and A. Gelman, 2014: The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15, 15931623, https://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M., and J. K. Fletcher, 2019: The relationship between Indian monsoon rainfall and low-pressure systems. Climate Dyn., 53, 18591871, https://doi.org/10.1007/s00382-019-04744-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., A. G. Turner, and D. E. Parker, 2016: The spatiotemporal structure of precipitation in Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 142, 31953210, https://doi.org/10.1002/qj.2901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jay-Allemand, M., P. Javelle, I. Gejadze, P. Arnaud, P. O. Malaterre, J. A. Fine, and D. Organde, 2020: On the potential of variational calibration for a fully distributed hydrological model: Application on a Mediterranean catchment. Hydrol. Earth Syst. Sci., 24, 55195538, https://doi.org/10.5194/hess-24-5519-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, and L. Gandin, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. R. Ghimire, and F. Quintero, 2020: Streamflow forecasting without models. J. Hydrometeor., 21, 16891704, https://doi.org/10.1175/JHM-D-19-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krzysztofowicz, R., and K. S. Kelly, 2000: Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resour. Res., 36, 32653277, https://doi.org/10.1029/2000WR900108.

    • Search Google Scholar
    • Export Citation
  • Li, M., Q. J. Wang, J. C. Bennett, and D. E. Robertson, 2015: A strategy to overcome adverse effects of autoregressive updating of streamflow forecasts. Hydrol. Earth Syst. Sci., 19, 115, https://doi.org/10.5194/hess-19-1-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., Q. J. Wang, J. C. Bennett, and D. E. Robertson, 2016: Error Reduction and Representation In Stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting. Hydrol. Earth Syst. Sci., 20, 35613579, https://doi.org/10.5194/hess-20-3561-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., Q. J. Wang, D. E. Robertson, and J. C. Bennett, 2017a: Improved error modelling for streamflow forecasting at hourly time steps by splitting hydrographs into rising and falling limbs. J. Hydrol., 555, 586599, https://doi.org/10.1016/j.jhydrol.2017.10.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., Q. Duan, C. Miao, A. Ye, W. Gong, and Z. Di, 2017b: A Review on Statistical Postprocessing Methods for Hydrometeorological Ensemble Forecasting. John Wiley & Sons Inc., 1246 pp.

    • Crossref
    • Export Citation
  • Liang, X., and Z. Xie, 2001: A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Adv. Water Resour., 24, 11731193, https://doi.org/10.1016/S0309-1708(01)00032-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 415–14 429, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., E. F. Wood, and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, https://doi.org/10.1016/0921-8181(95)00046-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and H. V. Gupta, 2007: Uncertainty in Hydrologic Modeling: Toward an Integrated Data Assimilation Framework. John Wiley & Sons, Ltd, 7401 pp.

    • Crossref
    • Export Citation
  • Lohmann, D., R. Nolte-Holube, and E. Raschke, 1996: A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus, 48A, 708721, https://doi.org/10.3402/tellusa.v48i5.12200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucatero, D., H. Madsen, J. C. Refsgaard, J. Kidmose, and K. H. Jensen, 2018: Seasonal streamflow forecasts in the Ahlergaarde catchment, Denmark: The effect of preprocessing and post-processing on skill and statistical consistency. Hydrol. Earth Syst. Sci., 22, 36013617, https://doi.org/10.5194/hess-22-3601-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., and K. Al-Harbi, 2017: Performances of LOO and WAIC as IRT model selection methods. Psychol. Test Assess. Model., 59, 183205, https://www.psychologie-aktuell.com/fileadmin/download/ptam/2-2017_20170627/03_Luo_.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McInerney, D., M. Thyer, D. Kavetski, J. Lerat, and G. Kuczera, 2017: Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors. Water Resour. Res., 53, 21992239, https://doi.org/10.1002/2016WR019168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McInerney, D., M. Thyer, D. Kavetski, B. Bennett, J. Lerat, M. Gibbs, and G. Kuczera, 2018: A simplified approach to produce probabilistic hydrological model predictions. Environ. Modell. Software, 109, 306314, https://doi.org/10.1016/j.envsoft.2018.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., B. Rajagopalan, M. P. Clark, G. Cortés, and J. McPhee, 2014: A robust multimodel framework for ensemble seasonal hydroclimatic forecasts. Water Resour. Res., 50, 60306052, https://doi.org/10.1002/2014WR015426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., M. P. Clark, M. Barlage, B. Rajagopalan, L. Samaniego, G. Abramowitz, and H. Gupta, 2015a: Are we unnecessarily constraining the agility of complex process-based models? Water Resour. Res., 51, 716728, https://doi.org/10.1002/2014WR015820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., B. Rajagopalan, M. P. Clark, K. Ikeda, and R. M. Rasmussen, 2015b: Statistical postprocessing of high-resolution regional climate model output. Mon. Wea. Rev., 143, 15331553, https://doi.org/10.1175/MWR-D-14-00159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhammad, A., T. A. Stadnyk, F. Unduche, and P. Coulibaly, 2018: Multi-model approaches for improving seasonal ensemble streamflow prediction scheme with various statistical post-processing techniques in the Canadian Prairie region. Water, 10, 1604, https://doi.org/10.3390/w10111604.

    • Crossref
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models Part I – A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ossandón, Á., B. Rajagopalan, U. Lall, J. S. Nanditha, and V. Mishra, 2021: A Bayesian hierarchical network model for daily streamflow ensemble forecasting. Water Resour. Res., 57, e2021WR029920, https://doi.org/10.1029/2021WR029920.

    • Crossref
    • Export Citation
  • Pagano, T. C., and Coauthors, 2014: Challenges of operational river forecasting. J. Hydrometeor., 15, 16921707, https://doi.org/10.1175/JHM-D-13-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pai, D., L. Sridhar, M. Rajeevan, O. P. Sreejith, N. S. Satbhai, and B. Mukhopadhyay, 2014: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65, 1–18, https://doi.org/10.54302/mausam.v65i1.851.

    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., and A. Montanari, 2019: Global and regional increase of precipitation extremes under global warming. Water Resour. Res., 55, 49014914, https://doi.org/10.1029/2018WR024067.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, P., D. E. Robertson, and Q. J. Wang, 2013: A Bayesian joint probability post-processor for reducing errors and quantifying uncertainty in monthly streamflow predictions. Hydrol. Earth Syst. Sci., 17, 795804, https://doi.org/10.5194/hess-17-795-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2017: R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/.

  • Ravindranath, A., N. Devineni, U. Lall, E. R. Cook, G. Pederson, J. Martin, and C. Woodhouse, 2019: Streamflow reconstruction in the upper Missouri River basin using a novel Bayesian network model. Water Resour. Res., 55, 76947716, https://doi.org/10.1029/2019WR024901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reggiani, P., M. Renner, A. H. Weerts, and P. A. Van Gelder, 2009: Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system. Water Resour. Res., 45, W02428, https://doi.org/10.1029/2007WR006758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, C., and G. Casella, 2011: A short history of Markov chain Monte Carlo: Subjective recollections from incomplete data. Stat. Sci., 26, 102115, https://doi.org/10.1214/10-STS351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Schumann, G. J., J. C. Neal, N. Voisin, K. M. Andreadis, F. Pappenberger, N. Phanthuwongpakdee, A. C. Hall, and P. D. Bates, 2013: A first large-scale flood inundation forecasting model. Water Resour. Res., 49, 62486257, https://doi.org/10.1002/wrcr.20521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafii, M., and B. A. Tolson, 2015: Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resour. Res., 51, 37963814, https://doi.org/10.1002/2014WR016520.

    • Search Google Scholar
    • Export Citation
  • Shah, R. D., and V. Mishra, 2016: Utility of Global Ensemble Forecast System (GEFS) reforecast for medium-range drought prediction in India. J. Hydrometeor., 17, 17811800, https://doi.org/10.1175/JHM-D-15-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, https://doi.org/10.1029/2006JD008288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde, 2002: Bayesian measures of model complexity and fit. J. Roy. Stat. Soc., 64, 583639, https://doi.org/10.1111/1467-9868.00353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan Development Team, 2014: Stan Modeling Language User’s Guide and Reference Manual. Stan Development Team, 408 pp.

  • Stan Development Team, 2020: RStan: The R interface to Stan. Stan Development Team, http://mc-stan.org/.

    • Crossref
    • Export Citation
  • Tanoue, M., Y. Hirabayashi, and H. Ikeuchi, 2016: Global-scale river flood vulnerability in the last 50 years. Sci. Rep., 6, 36021, https://doi.org/10.1038/srep36021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiwari, A. D., M. Parthasarathi, and V. Mishra, 2022: Influence of bias correction of meteorological and streamflow forecast on hydrological prediction in India. J. Hydrometeor., https://doi.org/10.1175/JHM-D-20-0235.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todini, E., 2008: A model conditional processor to assess predictive uncertainty in flood forecasting. Int. J. River Basin Manage., 6, 123137, https://doi.org/10.1080/15715124.2008.9635342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyralis, H., G. Papacharalampous, A. Burnetas, and A. Langousis, 2019: Hydrological post-processing using stacked generalization of quantile regression algorithms: Large-scale application over CONUS. J. Hydrol., 577, 123957, https://doi.org/10.1016/j.jhydrol.2019.123957.

    • Crossref
    • Export Citation
  • Vásquez, N., J. Cepeda, T. Gómez, P. A. Mendoza, M. Lagos, J. P. Boisier, C. Álvarez-Garretón, and X. Vargas, 2021: Catchment-scale natural water balance in Chile. Water Resources of Chile, Springer International Publishing, 189–208.

    • Crossref
    • Export Citation
  • Vehtari, A., A. Gelman, and J. Gabry, 2017: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput., 27, 14131432, https://doi.org/10.1007/s11222-016-9696-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vehtari, A., J. Gabry, M. Magnusson, Y. Yao, P.-C. Bürkner, T. Paananen, and A. Gelman, 2020: loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2.4.1, Stan Development Team, https://mc-stan.org/loo/.

    • Crossref
    • Export Citation
  • Verkade, J. S., J. D. Brown, P. Reggiani, and A. H. Weerts, 2013: Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. J. Hydrol., 501, 7391, https://doi.org/10.1016/j.jhydrol.2013.07.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallemacq, P., and R. House, 2018: Economic losses, poverty and disasters: 1998–2017. UNISDR and CRED, Tech. Rep., 31 pp., https://reliefweb.int/report/world/economic-losses-poverty-disasters-1998-2017.

    • Crossref
    • Export Citation
  • Wang, Q. J., D. E. Robertson, and F. H. Chiew, 2009: A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour. Res., 45, 5407, https://doi.org/10.1029/2008WR007355.

    • Search Google Scholar
    • Export Citation
  • Wasko, C., and A. Sharma, 2017: Continuous rainfall generation for a warmer climate using observed temperature sensitivities. J. Hydrol., 544, 575590, https://doi.org/10.1016/j.jhydrol.2016.12.002.

    • Search Google Scholar
    • Export Citation
  • Weerts, A. H., H. C. Winsemius, and J. S. Verkade, 2011: Estimation of predictive hydrological uncertainty using quantile regression: Examples from the National Flood Forecasting System (England and Wales). Hydrol. Earth Syst. Sci., 15, 255265, https://doi.org/10.5194/hess-15-255-2011.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Woldemeskel, F., D. McInerney, J. Lerat, M. Thyer, D. Kavetski, D. Shin, N. Tuteja, and G. Kuczera, 2018: Evaluating post-processing approaches for monthly and seasonal streamflow forecasts. Hydrol. Earth Syst. Sci., 22, 62576278, https://doi.org/10.5194/hess-22-6257-2018.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and J. C. Schaake, 2008: Correcting errors in streamflow forecast ensemble mean and spread. J. Hydrometeor., 9, 132148, https://doi.org/10.1175/2007JHM862.1.

    • Search Google Scholar
    • Export Citation
  • Wu, H., R. F. Adler, Y. Tian, G. J. Huffman, H. Li, and J. Wang, 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 26932717, https://doi.org/10.1002/2013WR014710.

    • Search Google Scholar
    • Export Citation
  • Ye, A., Q. Duan, X. Yuan, E. F. Wood, and J. Schaake, 2014: Hydrologic post-processing of MOPEX streamflow simulations. J. Hydrol., 508, 147156, https://doi.org/10.1016/j.jhydrol.2013.10.055.

    • Search Google Scholar
    • Export Citation
  • Ye, A., Q. Duan, J. Schaake, J. Xu, X. Deng, Z. Di, C. Miao, and W. Gong, 2015: Post-processing of ensemble forecasts in low-flow period. Hydrol. Processes, 29, 24382453, https://doi.org/10.1002/hyp.10374.

    • Search Google Scholar
    • Export Citation
  • Zalachori, I., M.-H. Ramos, R. Garçon, T. Mathevet, and J. Gailhard, 2012: Statistical processing of forecasts for hydrological ensemble prediction: A comparative study of different bias correction strategies. Adv. Sci. Res., 8, 135141, https://doi.org/10.5194/asr-8-135-2012.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., Q. Duan, J. Schaake, A. Ye, and J. Xia, 2011: A hydrologic post-processor for ensemble streamflow predictions. Adv. Geosci., 29, 5159, https://doi.org/10.5194/adgeo-29-51-2011.

    • Search Google Scholar
    • Export Citation
  • Zhao, T., Q. J. Wang, J. C. Bennett, D. E. Robertson, Q. Shao, and J. Zhao, 2015: Quantifying predictive uncertainty of streamflow forecasts based on a Bayesian joint probability model. J. Hydrol., 528, 329340, https://doi.org/10.1016/j.jhydrol.2015.06.043.

    • Search Google Scholar
    • Export Citation
  • Zhao, T., A. Schepen, and Q. J. Wang, 2016: Ensemble forecasting of sub-seasonal to seasonal streamflow by a Bayesian joint probability modelling approach. J. Hydrol., 541, 839849, https://doi.org/10.1016/j.jhydrol.2016.07.040.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and S. Guo, 2013: Incorporating ecological requirement into multipurpose reservoir operating rule curves for adaptation to climate change. J. Hydrol., 498, 153164, hhttps://doi.org/10.1016/j.jhydrol.2013.06.028.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 322 322 65
Full Text Views 69 69 16
PDF Downloads 81 81 20

A Bayesian Hierarchical Framework for Postprocessing Daily Streamflow Simulations across a River Network

View More View Less
  • 1 aDepartment of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado
  • | 2 bDepartamento de Obras Civiles, Universidad Técnica Federico Santa María, Valparaíso, Chile
  • | 3 cCivil Engineering, Indian Institute of Technology, Gandhinagar, India
  • | 4 dDepartment of Civil Engineering, Universidad de Chile, Santiago, Chile
  • | 5 eAdvanced Mining Technology Center, Universidad de Chile, Santiago, Chile
  • | 6 fCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
Restricted access

Abstract

Despite the potential and increasing interest in physically based hydrological models for streamflow forecasting applications, they are constrained in terms of agility to generate ensembles. Hence, we develop and test a Bayesian hierarchical model (BHM) to postprocess physically based hydrologic model simulations at multiple sites on a river network, with the aim to generate probabilistic information (i.e., ensembles) and improve raw model skill. We apply our BHM framework to daily summer (July–August) streamflow simulations at five stations located in the Narmada River basin in central India, forcing the Variable Infiltration Capacity (VIC) model with observed rainfall. In this approach, daily observed streamflow at each station is modeled with a conditionally independent probability density function with time varying distribution parameters, which are modeled as a linear function of potential covariates that include VIC outputs and meteorological variables. Using suitable priors on the parameters, posterior parameters and predictive posterior distributions—and thus ensembles—of daily streamflow are obtained. The best BHM model considers a gamma distribution and uses VIC streamflow and a nonlinear covariate formulated as the product of VIC streamflow and 2-day precipitation spatially averaged across the area between the current and upstream station. The second covariate enables correcting the time delay in flow peaks and nonsystematic biases in VIC streamflow. The results show that the BHM postprocessor increases probabilistic skill in 60% compared to raw VIC simulations, providing reliable ensembles for most sites. This modeling approach can be extended to combine forecasts from multiple sources and provide skillful multimodel ensemble forecasts.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Álvaro Ossandón, alvaro.ossandon@colorado.edu

Abstract

Despite the potential and increasing interest in physically based hydrological models for streamflow forecasting applications, they are constrained in terms of agility to generate ensembles. Hence, we develop and test a Bayesian hierarchical model (BHM) to postprocess physically based hydrologic model simulations at multiple sites on a river network, with the aim to generate probabilistic information (i.e., ensembles) and improve raw model skill. We apply our BHM framework to daily summer (July–August) streamflow simulations at five stations located in the Narmada River basin in central India, forcing the Variable Infiltration Capacity (VIC) model with observed rainfall. In this approach, daily observed streamflow at each station is modeled with a conditionally independent probability density function with time varying distribution parameters, which are modeled as a linear function of potential covariates that include VIC outputs and meteorological variables. Using suitable priors on the parameters, posterior parameters and predictive posterior distributions—and thus ensembles—of daily streamflow are obtained. The best BHM model considers a gamma distribution and uses VIC streamflow and a nonlinear covariate formulated as the product of VIC streamflow and 2-day precipitation spatially averaged across the area between the current and upstream station. The second covariate enables correcting the time delay in flow peaks and nonsystematic biases in VIC streamflow. The results show that the BHM postprocessor increases probabilistic skill in 60% compared to raw VIC simulations, providing reliable ensembles for most sites. This modeling approach can be extended to combine forecasts from multiple sources and provide skillful multimodel ensemble forecasts.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Álvaro Ossandón, alvaro.ossandon@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 5.39 MB)
Save