• Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, https://doi.org/10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Air Force Weather Agency, 2002: Data format handbook for AGRMET, 17 pp., https://www2.mmm.ucar.edu/mm5/documents/DATA_FORMAT_HANDBOOK.pdf.

    • Search Google Scholar
    • Export Citation
  • Arsenault, K. R., and Coauthors, 2020: The NASA hydrological forecast system for food and water security applications. Bull. Amer. Meteor. Soc., 101, E1007E1025, https://doi.org/10.1175/BAMS-D-18-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. M. Haberlie, and J. Strohn, 2019: A climatology of quasi-linear convective systems and their hazards in the United States. Wea. Forecasting, 34, 16051631, https://doi.org/10.1175/WAF-D-19-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M., and K. E. Mitchell, 1997: The NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Boston, MA, Amer. Meteor. Soc., 5455.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2017: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2019a: Daily evaluation of 26 precipitation datasets using Stage-IV gauge radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. van Dijk, T. R. McVicar, and R. F. Adler, 2019b: MSWEP V2 global 3-hourly 0.1° precipitation – Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boluwade, A., T. Stadnyk, V. Fortin, and G. Roy, 2018: Assimilation of precipitation estimates from the Integrated Multisatellite Retrievals for GPM (IMERG, early run) in the Canadian Precipitation Analysis (CaPA). J. Hydrol. Reg. Stud., 14, 1022, https://doi.org/10.1016/j.ejrh.2017.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, G. E. P., and D. R. Cox, 1964: An analysis of transformation. J. Roy. Stat. Soc., 26B, 211243, https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.

    • Search Google Scholar
    • Export Citation
  • Bratseth, A. M., 1986: Statistical interpolation by means of successive corrections. Tellus, 38A, 439447, https://doi.org/10.1111/j.1600-0870.1986.tb00476.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 18651877, https://doi.org/10.1175/BAMS-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2015: TRMM LIS climatology of thunderstorm occurrence and conditional flash rates. J. Climate, 28, 65366547, https://doi.org/10.1175/JCLI-D-15-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheeks, S. M., S. Fueglistaler, and S. T. Garner, 2020: A satellite-based climatology of central and southeastern U.S. mesoscale convective systems. Mon. Wea. Rev., 148, 26072621, https://doi.org/10.1175/MWR-D-20-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008a: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, W. Shi, V. Silva, V. Kousky, W. Higgins, and J. E. Janowiak, 2008b: Quality control of daily precipitation reports at NOAA/CPC. 12th Conf. on IOAS-AOLS, New Orleans, LA, Amer. Meteor. Soc., 3.3, https://ams.confex.com/ams/88Annual/techprogram/paper_131381.htm.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75, 257288, https://doi.org/10.2151/jmsj1965.75.1B_257.

  • Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO Physical-space Statistical Analysis System. Mon. Wea. Rev., 126, 29132926, https://doi.org/10.1175/1520-0493(1998)126<2913:ATEODS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, https://doi.org/10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., 1997: Dual formulation of four-dimensional variational assimilation. Quart. J. Roy. Meteor. Soc., 123, 24492461, https://doi.org/10.1002/qj.49712354414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressie, N. A. C., 2015: Statistics for Spatial Data. Revised ed. John Wiley & Sons, 900 pp.

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Daley, R., and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129, 869883, https://doi.org/10.1175/1520-0493(2001)129<0869:NFAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and A. M. da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124, 269295, https://doi.org/10.1002/qj.49712454512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eylander, J. B., C. D. Peters-Lidard, and S. V. Kumar, 2005: The AFWA next generation land data assimilation system. Proc. Battlespace Atmospheric and Cloud Impacts on Military Operations (BACIMO) Conf., Monterey, CA, Naval Research Laboratory, 5.01, https://www.nrlmry.navy.mil/BACIMO/2005/Proceedings/5%20NWP/5.02%20NWP%20Eylander%20Land%20Surface%20Assimilation%20Paper.pdf.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, J. O. Roads, and C. J. Willmott, 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294304, https://doi.org/10.1175/1520-0442(2004)017<0294:UIPATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., G. Roy, N. Donaldson, and A. Mahidjiba, 2015: Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA). J. Hydrol., 531, 296307, https://doi.org/10.1016/j.jhydrol.2015.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., G. Roy, T. Stadnyk, K. Koenig, N. Gasset, and A. Mahidjiba, 2018: Ten years of science based on the Canadian Precipitation Analysis: A CaPA system overview and literature review. Atmos.-Ocean, 56, 178196, https://doi.org/10.1080/07055900.2018.1474728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2019: Recognizing the Famine Early Warning Systems Network: Over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Amer. Meteor. Soc., 100, 10111027, https://doi.org/10.1175/BAMS-D-17-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Gayno, G. A., and J. Wegiel, 2000: Incorporating global real-time surface fields into MM5 at the Air Force Weather Agency. Preprints, 10th Penn State/NCAR MM5 Users’ Workshop, Boulder, CO, NCAR, 62–65, http://www2.mmm.ucar.edu/mm5/workshop/ws00/Gayno.doc.

    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., and P. A. Phoebus, 1992: The Navy’s operational atmospheric analysis. Wea. Forecasting, 7, 232249, https://doi.org/10.1175/1520-0434(1992)007<0232:TNOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation measurement intercomparison. Instruments and Observing Methods Rep. 67, WMO TD-872, 212 pp., https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., J. Meng, M. Rodell, and P. Houser, 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states. J. Hydrometeor., 6, 573598, https://doi.org/10.1175/JHM437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gratton, S., and J. Tshimanga, 2009: An observation-space formulation of variational assimilation using a restricted preconditioned conjugate gradient algorithm. Quart. J. Roy. Meteor. Soc., 135, 15731585, https://doi.org/10.1002/qj.477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435, https://doi.org/10.1029/91JD00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, Z.-Z. Hu, X. Gao, and M. Zhao, 2006: Evaluation of the second global wetness project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, https://doi.org/10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Gürol, S., A. T. Weaver, A. M. Moore, A. Piacentini, H. G. Arango, and S. Gratton, 2014: B-preconditioned minimization algorithms for variational data assimilation with the dual formulation. Quart. J. Roy. Meteor. Soc., 140, 539556, https://doi.org/10.1002/qj.2150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Higgins, R. W., J. E. Janowiak, and Y.-P. Yao, 1996: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/Climate Prediction Center Atlas 1, accessed 3 May 2021, https://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/1/index.html.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG). NASA Algorithm Theoretical Basis Doc., Version 06, 35 pp., https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Karger, D. N., A. M. Wilson, C. Mahony, N. E. Zimmerman, and W. Jetz, 2021: Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data, 8, 307, https://doi.org/10.1038/s41597-021-01084-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemp, E. M., J. Wegiel, S. V. Kumar, J. Geiger, and C. Peters-Lidard, 2020: Evaluation of a new global precipitation analysis at the US Air Force 557th Weather Wing. 34th Conf. on Hydrology, Boston, MA, Amer. Meteor. Soc., 13B.4, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/368159.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Model. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkee, D. B., G. A. Poe, D. J. Boucher, S. D. Swadley, Y. Hong, J. E. Wessel, and E. A. Uliana, 2008: Design and evaluation of the first special sensor microwave imager/sounder. IEEE Trans. Geosci. Remote Sens., 46, 863883, https://doi.org/10.1109/TGRS.2008.917980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, https://doi.org/10.1002/qj.49712353807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lespinas, F., V. Fortin, G. Roy, P. Rasmussen, and T. Stadnyk, 2015: Performance evaluation of the Canadian Precipitation Analysis (CaPA). J. Hydrometeor., 16, 20452064, https://doi.org/10.1175/JHM-D-14-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lespinas, F., G. Roy, A. Mahidjiba, and V. Fortin, 2021: Implementation of the Regional Deterministic Precipitation Analysis System (CaPA-RDPA) version 5.0.0. Tech. Note, Environment and Climate Change Canada, 16 pp., https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_notes/technote_capa_rdpa-500_e.pdf.

    • Search Google Scholar
    • Export Citation
  • Levenberg, K., 1944: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math., 2, 164168, https://doi.org/10.1090/qam/10666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2013: Experimental 4D-Var assimilation of SYNOP rain gauge data at ECMWF. Mon. Wea. Rev., 141, 15271544, https://doi.org/10.1175/MWR-D-12-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1981: A global three-dimensional multivariate statistical interpolation scheme. Mon. Wea. Rev., 109, 701721, https://doi.org/10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 11771194, https://doi.org/10.1002/qj.49711247414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., B. Brasnett, and S. Gagnon, 2007: A Canadian Precipitation Analysis (CaPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117, https://doi.org/10.3137/ao.v450101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquardt, D. W., 1963: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11, 431441, https://doi.org/10.1137/0111030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1963: Principles of geostatistics. Econ. Geol., 58, 12461266, https://doi.org/10.2113/gsecongeo.58.8.1246.

  • McNally, A., and Coauthors, 2017: A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data, 4, 170012, https://doi.org/10.1038/sdata.2017.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A., and Coauthors, 2019: Acute water-scarcity monitoring for Africa. Water, 11, 1968, https://doi.org/10.3390/w11101968.

  • Menne, M. J., and Coauthors, 2012: Global Historical Climatology Network-Daily (GHCN-D), version 3.26. NOAA NCEI, accessed 10 August 2019, https://doi.org/10.7289/V5D21VHZ.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B., S. Bertone, P. Rice, R. Neill, and K. Mitchell, 1991: A worldwide near-real time diagnostic agrometeorological model. Preprints, 20th Conf. on Agricultural and Forest Meteorology, Salt Lake City, UT, Amer. Meteor. Soc., 711.

    • Search Google Scholar
    • Export Citation
  • Moré, J. J., B. S. Garbow, and K. E. Hillstrom, 1980: User guide for MINPACK-1. Argonne National Laboratory Rep. ANL-80-74, 261 pp., https://doi.org/10.2172/6997568.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, https://doi.org/10.1029/2003JD003994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innov. Syst. Software Eng., 3, 157165, https://doi.org/10.1007/s11334-007-0028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, W., J. Liu, J. Xia, and D. Chen, 2020: Divergent sensitivity of surface water and energy variables to precipitation product uncertainty in the Tibetan Plateau. J. Hydrol., 581, 124338, https://doi.org/10.1016/j.jhydrol.2019.124338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Q. Liu, R. D. Koster, C. S. Draper, S. P. P. Mahanama, and G. S. Partyka, 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, https://doi.org/10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., M. Ziese, A. Meyer-Christoffer, P. Finger, E. Rustemeier, and A. Becker, 2016: The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources. Proc. IAHS, 374, 2934, https://doi.org/10.5194/piahs-374-29-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. Huffman, C. Kidd, E. Stocher, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soci, C., E. Bazile, F. Besson, and T. Landelius, 2016: High-resolution precipitation re-analysis system for climatological purposes. Tellus, 68A, 29879, https://doi.org/10.3402/tellusa.v68.29879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoffler, R. O., 2017: The USAF GALWEM: Improving military decision making, advancing national capability. 28th Conf. on Weather Analysis and Forecasting/24th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 2B.2, https://ams.confex.com/ams/97Annual/webprogram/Paper313034.html.

    • Search Google Scholar
    • Export Citation
  • Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: IMERG V06: Changes to the morphing algorithm. J. Atmos. Oceanic Technol., 36, 24712482, https://doi.org/10.1175/JTECH-D-19-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, https://doi.org/10.1029/2009JD011949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 18831898, https://doi.org/10.1175/1520-0477(1998)079<1883:TOGIRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincenty, T., 1975: Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev., 23, 8893, https://doi.org/10.1179/sre.1975.23.176.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virtanen, P., and Coauthors, 2020: SciPy1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods, 17, 261272, https://doi.org/10.1038/s41592-019-0686-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2011: Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China. J. Geophys. Res., 116, D02107, https://doi.org/10.1029/2010JD014659.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2020: Sensitivity of snow simulations to different atmospheric forcing data sets in the land surface model CAS-LSM. J. Geophys. Res. Atmos., 125, e2019JD032001, https://doi.org/10.1029/2019JD032001.

    • Search Google Scholar
    • Export Citation
  • Wegiel, J., and Coauthors, 2020: Data assimilation enhancements to Air Force Weather’s Land Information System. 34th Conf. on Hydrology, Boston, MA, Amer. Meteor. Soc., 366952, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/366952.

    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, and Z. Guo, 2008: Sensitivities of soil wetness simulation to uncertainties in precipitation and radiation. Geophys. Res. Lett., 35, L15703, https://doi.org/10.1029/2008GL034494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 464 pp.

  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., M. Maeda, S. Khadgarai, M. Masuda, and P. Xie, 2020: End of the day (EOD) judgment for daily rain-gauge data. Atmosphere, 11, 772, https://doi.org/10.3390/atmos11080772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 199 199 37
Full Text Views 88 88 18
PDF Downloads 85 85 24

A NASA–Air Force Precipitation Analysis for Near-Real-Time Operations

View More View Less
  • 1 aHydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland
  • | 2 bScience Systems and Applications, Inc., Lanham, Maryland
  • | 3 cScience Applications International Corporation, Reston, Virginia
  • | 4 dScience Data Processing Branch, NASA GSFC, Greenbelt, Maryland
  • | 5 eSciences and Exploration Directorate, NASA GSFC, Greenbelt, Maryland
Restricted access

Abstract

This article describes a new precipitation analysis algorithm developed by NASA for time-sensitive operations at the United States Air Force. Implemented as part of the Land Information System—a land modeling and data assimilation software framework—this NASA–Air Force Precipitation Analysis (NAFPA) combines numerical weather prediction model outputs with rain gauge measurements and satellite estimates to produce global, gridded 3-h accumulated precipitation fields at approximately 10-km resolution. Input observations are subjected to quality control checks before being used by the Bratseth analysis algorithm that converges to optimal interpolation. NAFPA assimilates up to 3.5 million observations without artificial data thinning or selection. To evaluate this new approach, a multiyear reanalysis is generated and intercompared with eight alternative precipitation products across the contiguous United States, Africa, and the monsoon region of eastern Asia. NAFPA yields superior accuracy and correlation over low-latency (up to 14 h) alternatives (numerical weather prediction and satellite retrievals), and often outperforms high-latency (up to 3.5 months) products, although the details for the latter vary by region and product. The development of NAFPA offers a high-quality, near-real-time product for use in meteorological, land surface, and hydrological research and applications.

Significance Statement

Precipitation is a key input to land modeling systems due to effects on soil moisture and other parts of the hydrologic cycle. It is also of interest to government decision-makers due to impacts on human activities. Here we present a new precipitation analysis based on available near-real-time data. By running the program for prior years and comparing with alternative products, we demonstrate that our analysis provides better accuracy and usually less bias than near-real-time satellite data alone, and better accuracy and correlation than data provided by numerical weather models. Our analysis is also competitive with other products created months after the fact, justifying confidence in using our analysis in near-real-time operations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric M. Kemp, eric.kemp@nasa.gov

Abstract

This article describes a new precipitation analysis algorithm developed by NASA for time-sensitive operations at the United States Air Force. Implemented as part of the Land Information System—a land modeling and data assimilation software framework—this NASA–Air Force Precipitation Analysis (NAFPA) combines numerical weather prediction model outputs with rain gauge measurements and satellite estimates to produce global, gridded 3-h accumulated precipitation fields at approximately 10-km resolution. Input observations are subjected to quality control checks before being used by the Bratseth analysis algorithm that converges to optimal interpolation. NAFPA assimilates up to 3.5 million observations without artificial data thinning or selection. To evaluate this new approach, a multiyear reanalysis is generated and intercompared with eight alternative precipitation products across the contiguous United States, Africa, and the monsoon region of eastern Asia. NAFPA yields superior accuracy and correlation over low-latency (up to 14 h) alternatives (numerical weather prediction and satellite retrievals), and often outperforms high-latency (up to 3.5 months) products, although the details for the latter vary by region and product. The development of NAFPA offers a high-quality, near-real-time product for use in meteorological, land surface, and hydrological research and applications.

Significance Statement

Precipitation is a key input to land modeling systems due to effects on soil moisture and other parts of the hydrologic cycle. It is also of interest to government decision-makers due to impacts on human activities. Here we present a new precipitation analysis based on available near-real-time data. By running the program for prior years and comparing with alternative products, we demonstrate that our analysis provides better accuracy and usually less bias than near-real-time satellite data alone, and better accuracy and correlation than data provided by numerical weather models. Our analysis is also competitive with other products created months after the fact, justifying confidence in using our analysis in near-real-time operations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric M. Kemp, eric.kemp@nasa.gov
Save