• Aceituno, P., 1988: On the functioning of the Southern Oscillation in the South American Sector. Part I: Surface climate. Mon. Wea. Rev., 116, 505524, https://doi.org/10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agudelo, J., P. A. Arias, S. C. Vieira, and J. A., Martínez, 2018: Influence of longer dry seasons in the Southern Amazon on patterns of water vapor transport over northern South America and the Caribbean. Climate Dyn., 52, 26472665, https://doi.org/10.1007/s00382-018-4285-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angelis, C. F., and P. Salio, 2006: Impacts of the low level jets on the precipitation over Southern South America. Proc. of 8 ICSHMO, Foz do Iguaçu, Brazil, INPE, 961–966, http://mtc-m16b.sid.inpe.br/col/cptec.inpe.br/adm_conf/2005/11.01.00.06/doc/961-966.pdf.

    • Crossref
    • Export Citation
  • Araguás-Araguás, L., K. Froehlich, and K. Rozanski, 2000: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Processes, 14, 13411355, https://doi.org/10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arias, P. A., J. A. Martínez, and S. C. Vieira, 2015: Moisture sources to the 2010–2012 anomalous wet season in northern South America. Climate Dyn., 45, 28612884, https://doi.org/10.1007/s00382-015-2511-7.

    • Search Google Scholar
    • Export Citation
  • Arvor, D., V. Dubreuil, J. Ronchail, M. Simões, and B. M. Funatsu, 2014: Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int. J. Climatol., 34, 26222633, https://doi.org/10.1002/joc.3863.

    • Search Google Scholar
    • Export Citation
  • Bershaw, J., S. M. Penny, and C. N. Garzione, 2012: Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate. J. Geophys. Res., 117, D02110, https://doi.org/10.1029/2011JD016132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciric, D., M. Stojanovic, A. Drumond, R. Nieto, and L. Gimeno, 2016: Tracking the origin of moisture over the Danube River Basin using a Lagrangian approach. Atmosphere, 7, 162, https://doi.org/10.3390/atmos7120162.

    • Search Google Scholar
    • Export Citation
  • Cohen, P. R., and D. Jensen, 1997: Overfitting explained. Preliminary Papers of the Sixth Int. Workshop on Artificial Intelligence and Statistics, Fort Lauderdale, FL, PMLR, 115M122, http://proceedings.mlr.press/r1/cohen97a/cohen97a.pdf.

    • Crossref
    • Export Citation
  • Córdova, M., G. Carrillo-Rojas, P. Crespo, B. Wilcox, and R. Célleri, 2015: Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data. Mt. Res. Dev., 35, 230239, https://doi.org/10.1659/MRD-JOURNAL-D-14-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, H., 1961: Isotopic variations in meteoric waters. Science, 133, 17021703, https://doi.org/10.1126/science.133.3465.1702.

  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, https://doi.org/10.3402/tellusa.v16i4.8993.

  • Dinçer, T., and B. R. Payne, 1971: An environmental isotope study of the south-western Karst region of Turkey. J. Hydrol., 14, 233258, https://doi.org/10.1016/0022-1694(71)90037-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doughty, C. E., and M. L. Goulden, 2008: Seasonal patterns of tropical forest leaf area index and CO2 exchange. J. Geophys. Res., 113, G00B06, https://doi.org/10.1029/2007JG000590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Espinoza, J. C., and Coauthors, 2020: Hydroclimate of the Andes part I: Main climatic features. Front. Earth Sci., 8, 1–20, https://doi.org/10.3389/feart.2020.00064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esquivel-Hernández, G., and Coauthors, 2019: Moisture transport and seasonal variations in the stable isotopic composition of rainfall in Central American and Andean Páramo during El Niño conditions (2015–2016). Hydrol. Processes, 33, 18021817, https://doi.org/10.1002/hyp.13438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froehlich, K., M. Kralik, W. Papesch, D. Rank, H. Scheifinger, and W. Stichler, 2008: Deuterium excess in precipitation of Alpine regions – Moisture recycling. Isotopes Environ. Health Stud., 44, 6170, https://doi.org/10.1080/10256010801887208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastmans, D., and Coauthors, 2017: Controls over spatial and seasonal variations on isotopic composition of the precipitation along the central and eastern portion of Brazil. Isotopes Environ. Health Stud., 53, 518538, https://doi.org/10.1080/10256016.2017.1305376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gébelin, A., C. Witt, M. Radkiewicz, and A. Mulch, 2021: Impact of the Southern Ecuadorian Andes on oxygen and hydrogen isotopes in precipitation. Front. Earth Sci., 9, 19, https://doi.org/10.3389/feart.2021.664590.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., 2013: Grand challenges in atmospheric science. Front. Earth Sci., 1, 15, https://doi.org/10.3389/feart.2013.00001.

  • Gonfiantini, R., M. A. Roche, J. C. Olivry, J. C. Fontes, and G. M. Zuppi, 2001: The altitude effect on the isotopic composition of tropical rains. Chem. Geol., 181, 147167, https://doi.org/10.1016/S0009-2541(01)00279-0.

    • Search Google Scholar
    • Export Citation
  • Hagemans, K., and Coauthors, 2021: Patterns of alluvial deposition in Andean lake consistent with ENSO trigger. Quat. Sci. Rev., 259, 106900, https://doi.org/10.1016/j.quascirev.2021.106900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hair, J. F., Jr., G. T. M. Hult, C. Ringle, and M. Sarstedt, 2016: A Primer on Partial Least Squares Structural Equation. Sage Publications, 384 pp.

    • Crossref
    • Export Citation
  • Harrell, F. E., 2015: Regression Modeling Strategies. 2nd ed. Springer, https://doi.org/10.1007/978-3-319-19425-7.

  • He, S., N. F. Goodkin, D. Jackisch, M. R. Ong, and D. Samanta, 2018: Continuous real-time analysis of the isotopic composition of precipitation during tropical rain events: Insights into tropical convection. Hydrol. Processes, 32, 15311545, https://doi.org/10.1002/hyp.11520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinze, G., and D. Dunkler, 2017: Five myths about variable selection. Transplant Int., 30, 610, https://doi.org/10.1111/tri.12895.

  • Helsel, D. R., and R. M. Hirsch, 2002: Statistical methods in water resources. Techniques of Water-Resources Investigations 04-A3, USGS, 510 pp., https://doi.org/10.3133/twri04A3.

    • Crossref
    • Export Citation
  • Heydarizad, M., E. Raeisi, R. Sori, and L. Gimeno, 2019: An overview of the atmospheric moisture transport effect on stable isotopes (18O, 2H) and d-excess contents of precipitation in Iran. Theor. Appl. Climatol., 138, 4763, https://doi.org/10.1007/s00704-019-02798-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., J. Emile-Geay, J. Nusbaumer, and D. Noone, 2018: Impact of convective activity on precipitation 18O in isotope-enabled general circulation models. J. Geophys. Res. Atmos., 123, 13 595–13 610, https://doi.org/10.1029/2018JD029187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IAEA, 2014: IAEA/GNIP precipitation sampling guide. International Atomic Energy Agency, 20 pp., http://www-naweb.iaea.org/napc/ih/documents/other/gnip_manual_v2.02_en_hq.pdf.

    • Crossref
    • Export Citation
  • IAEA/WMO, 2021: Global Network of Isotopes in Precipitation. International Atomic Energy Agency and World Meteorological Organization, https://www.iaea.org/services/networks/gnip.

  • Ingraham, N. L., 1998: Isotopic variations in precipitation. Isotope Tracers in Catchment Hydrology, Elsevier, 87118, https://doi.org/10.1016/B978-0-444-81546-0.50010-0.

    • Crossref
    • Export Citation
  • Jiménez-Sánchez, G., P. M. Markowski, G. S. Young, and D. J. Stensrud, 2020: The Orinoco low-level jet: An investigation of its mechanisms of formation using the WRF model. J. Geophys. Res. Atmos., 125, e2020JD032810, https://doi.org/10.1029/2020JD032810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., 2019: Recent changes in the South America low-level jet. NPJ Climate Atmos. Sci., 2, 18, https://doi.org/10.1038/s41612-019-0077-5.

  • Kaseke, K. F., L. Wang, H. Wanke, C. Tian, and M. Lanning, 2018: Precipitation origins and key drivers of precipitation isotope (18O, 2H, 17O) compositions over Windhoek running title: Precipitation isotopes over Windhoek. J. Geophys. Res. Atmos., 123, 73117330, https://doi.org/10.1029/2018JD028470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattan, Z., 2019: Factors controlling stable isotopes variability in precipitation in Syria: Statistical analysis approach. J. Earth Syst. Sci., 128, 151, https://doi.org/10.1007/s12040-019-1142-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, L. C., and J. J. McDonnell Eds., 1999: Isotope Tracers in Catchment Hydrology. Elsevier, 870 pp., https://doi.org/10.1016/C2009-0-10239-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurita, N., 2013: Water isotopic variability in response to mesoscale convective system over the tropical ocean. J. Geophys. Res. Atmos., 118, 10 37610 390, https://doi.org/10.1002/jgrd.50754.

    • Crossref
    • Export Citation
  • Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc., 86, 225233, https://doi.org/10.1175/BAMS-86-2-225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Duy, N., I. Heidbüchel, H. Meyer, B. Merz, and H. Apel, 2018: What controls the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical approach. Hydrol. Earth Syst. Sci., 22, 12391262, https://doi.org/10.5194/hess-22-1239-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibundgut, C., P. Maloszewski, and C. Külls, 2009: Tracers in Hydrology. John Wiley & Sons, 432 pp.

    • Crossref
    • Export Citation
  • Lin, D., D. P. Foster, and L. H. Ungar, 2011: VIF regression: A fast regression algorithm for large data. J. Amer. Stat. Assoc., 106, 232247, https://doi.org/10.1198/jasa.2011.tm10113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonnell, J. J., M. Bonell, M. K. Stewart, and A. J. Pearce, 1990: Deuterium variations in storm rainfall: Implications for stream hydrograph separation. Water Resour. Res., 26, 455458, https://doi.org/10.1029/WR026i003p00455.

    • Search Google Scholar
    • Export Citation
  • Montini, T. L., C. Jones, and L. M. V. Carvalho, 2019: The South American low-level jet: A new climatology, variability, and changes. J. Geophys. Res. Atmos., 124, 12001218, https://doi.org/10.1029/2018JD029634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mook, W., and K. Rozanski, 2000: Environmental Isotopes in the Hydrological Cycle. IAEA Publications, 39 pp.

    • Crossref
    • Export Citation
  • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, https://doi.org/10.13031/2013.23153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosquera, G. M., P. X. Lazo, R. Célleri, B. P. Wilcox, and P. Crespo, 2015: Runoff from tropical alpine grasslands increases with areal extent of wetlands. Catena, 125, 120128, https://doi.org/10.1016/j.catena.2014.10.010.

    • Search Google Scholar
    • Export Citation
  • Mosquera, G. M., R. Célleri, P. X. Lazo, K. B. Vaché, S. S. Perakis, and P. Crespo, 2016a: Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a high-elevation tropical ecosystem. Hydrol. Processes, 30, 29302947, https://doi.org/10.1002/hyp.10927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosquera, G. M., C. Segura, K. B. Vaché, D. Windhorst, L. Breuer, and P. Crespo, 2016b: Insights into the water mean transit time in a high-elevation tropical ecosystem. Hydrol. Earth Syst. Sci., 20, 29873004, https://doi.org/10.5194/hess-20-2987-2016.

    • Search Google Scholar
    • Export Citation
  • Muñoz, P., R. Célleri, and J. Feyen, 2016: Effect of the resolution of tipping-bucket rain gauge and calculation method on rainfall intensities in an Andean mountain gradient. Water, 8, 584, https://doi.org/10.3390/w8110534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nlend, B., and Coauthors, 2020: Identification of processes that control the stable isotope composition of rainwater in the humid tropical West-Central Africa. J. Hydrol., 584, 124650, https://doi.org/10.1016/j.jhydrol.2020.124650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, D., 2012: Pairing measurements of the water vapor isotope ratio with humidity to deduce atmospheric moistening and dehydration in the tropical midtroposphere. J. Climate, 25, 44764494, https://doi.org/10.1175/JCLI-D-11-00582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orellana-Alvear, J., R. Célleri, R. Rollenbeck, and J. Bendix, 2017: Analysis of rain types and their ZR relationships at different locations in the high Andes of southern Ecuador. J. Appl. Meteor. Climatol., 56, 30653080, https://doi.org/10.1175/JAMC-D-17-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padrón, R. S., B. P. Wilcox, P. Crespo, and R. Célleri, 2015: Rainfall in the Andean Páramo: New insights from high-resolution monitoring in southern Ecuador. J. Hydrometeor., 16, 985996, https://doi.org/10.1175/JHM-D-14-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pang, Z., Y. Kong, K. Froehlich, T. Huang, L. Yuan, Z. Li, and F. Wang, 2011: Processes affecting isotopes in precipitation of an arid region. Tellus, 63B, 352359, https://doi.org/10.1111/j.1600-0889.2011.00532.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penna, D., and Coauthors, 2012: Technical note: Evaluation of between-sample memory effects in the analysis of 2H and 18O of water samples measured by laser spectroscopes. Hydrol. Earth Syst. Sci., 16, 39253933, https://doi.org/10.5194/hess-16-3925-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picarro, 2010: ChemCorrectTM – Solving the problem of chemical contaminants in H2O stable isotope research. White Paper 24, 3 pp., https://www.picarro.com/support/documents.

    • Crossref
    • Export Citation
  • Poveda, G., L. Jaramillo, and L. F. Vallejo, 2014: Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res., 50, 98118, https://doi.org/10.1002/2013WR014087.

    • Crossref
    • Export Citation
  • Putman, A. L., R. P. Fiorella, G. J. Bowen, and Z. Cai, 2019: A global perspective on local meteoric water lines: Meta‐analytic insight into fundamental controls and practical constraints. Water Resour. Res., 55, 68966910, https://doi.org/10.1029/2019WR025181.

    • Search Google Scholar
    • Export Citation
  • Rindsberger, M., M. Magaritz, I. Carmi, and D. Gilad, 1983: The relation between air mass trajectories and the water isotope composition of rain in the Mediterranean Sea area. Geophys. Res. Lett., 10, 4346, https://doi.org/10.1029/GL010i001p00043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rolph, G., A. Stein, and B. Stunder, 2017: Real-time environmental applications and display sYstem: READY. Environ. Model. Software, 95, 210228, https://doi.org/10.1016/j.envsoft.2017.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozanski, K., and L. A. Araguas, 1995: Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. Bull. Inst. Fr. Etudes Andines, 24, 379390.

    • Crossref
    • Export Citation
  • Ruiz-Vásquez, M., P. A. Arias, J. A. Martínez, J. C. Espinoza, 2020: Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Climate Dyn., 54, 41694189, https://doi.org/10.1007/S00382-020-05223-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakamoto, M. S., 2011: Moisture sources and life cycle of convective systems over western Colombia. Adv. Meteor., 2011, 890759, https://doi.org/10.1155/2011/890759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salati, E., A. Dall’Olio, E. Matsui, and J. R. Gat, 1979: Recycling of water in the Amazon Basin: An isotopic study. Water Resour. Res., 15, 12501258, https://doi.org/10.1029/WR015i005p01250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-Murillo, R., and Coauthors, 2016: Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus eastern Pacific Ocean moisture sources. Quat. Sci. Rev., 131, 250261, https://doi.org/10.1016/j.quascirev.2015.08.028.

    • Search Google Scholar
    • Export Citation
  • Sánchez-Murillo, R., A. M. Durán-Quesada, C. Birkel, G. Esquivel-Hernández, and J. Boll, 2017: Tropical precipitation anomalies and d-excess evolution during El Niño 2014-16. Hydrol. Processes, 31, 956967, https://doi.org/10.1002/hyp.11088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-Murillo, R., and Coauthors, 2020: Tracing water sources and fluxes in a dynamic tropical environment: From observations to modeling. Front. Earth Sci., 8, 571477, https://doi.org/10.3389/feart.2020.571477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santhi, C., J. G. Arnold, J. R. Williams, W. A. Dugas, R. Srinivasan, and L. M. Hauck, 2001: Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Amer. Water Resour. Assoc., 37, 11691188, https://doi.org/10.1111/j.1752-1688.2001.tb03630.x.

    • Search Google Scholar
    • Export Citation
  • Singh, J., H. Knapp, and M. Demissie, 2005: Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS Contract Rep. 2004-08, Illinois State Water Survey, 343360, http://hdl.handle.net/2142/94220.

  • Sloat, L. L., and Coauthors, 2018: Increasing importance of precipitation variability on global livestock grazing lands. Nat. Climate Change, 8, 214218, https://doi.org/10.1038/s41558-018-0081-5.

    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Search Google Scholar
    • Export Citation
  • Su, L., Z. Yuan, J. C. H. Fung, and A. K. H. Lau, 2015: A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ., 506–507, 527537, https://doi.org/10.1016/j.scitotenv.2014.11.072.

    • Search Google Scholar
    • Export Citation
  • Thibeault, J., A. Seth, and G. Wang, 2012: Mechanisms of summertime precipitation variability in the Bolivian Altiplano: Present and future. Int. J. Climatol., 32, 20332041, https://doi.org/10.1002/joc.2424.

    • Search Google Scholar
    • Export Citation
  • Thies Clima, 2007: Instructions for use. Laser Precipitation Monitor 5.4110.xx.x00 V2.2xSTD, 58 pp., https://www.biral.com/wp-content/uploads/2015/01/5.4110.xx_.xxx_.pdf.

  • Van Der Ent, R. J., and O. A. Tuinenburg, 2017: The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci., 21, 779790, https://doi.org/10.5194/hess-21-779-2017.

    • Search Google Scholar
    • Export Citation
  • Van Liew, M. W., J. G. Arnold, and J. D. Garbrecht, 2003: Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE, 46, 15391551, https://doi.org/10.13031/2013.15643.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and M. W. Douglas, 2006: The South American low-level jet experiment. Bull. Amer. Meteor. Soc., 87, 6378, https://doi.org/10.1175/BAMS-87-1-63.

    • Search Google Scholar
    • Export Citation
  • Vittinghoff, E., and C. E. McCulloch, 2007: Relaxing the rule of ten events per variable in logistic and cox regression. Amer. J. Epidemiol., 165, 710718, https://doi.org/10.1093/aje/kwk052.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000: Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J. Climate, 13, 25202535, https://doi.org/10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. Paegle, 1996: Impact of analysis uncertainty upon regional atmospheric moisture flux. J. Geophys. Res., 101, 72917303, https://doi.org/10.1029/95JD02896.

    • Search Google Scholar
    • Export Citation
  • Wang, M., J. Wright, R. Buswell, and A. Brownlee, 2013: A comparison of approaches to stepwise regression for global sensitivity analysis used with evolutionary optimization. Proc. 13th Conf. of the Int. Building Performance Simulation Association, Chambéry, France, International Building Performance Simulation Association, 25512558, http://www.ibpsa.org/proceedings/BS2013/p_1047.pdf.

  • Windhorst, D., T. Waltz, E. Timbe, H. G. Frede, and L. Breuer, 2013: Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrol. Earth Syst. Sci., 17, 409419, https://doi.org/10.5194/hess-17-409-2013.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., and K.-M. Lau, 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201040, https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 313 313 114
Full Text Views 72 72 17
PDF Downloads 83 83 23

Hydrometeorological Factors Controlling the Stable Isotopic Composition of Precipitation in the Highlands of South Ecuador

View More View Less
  • 1 aDepartamento de Recursos Hídricos y Ciencias Ambientales and Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador
  • | 2 bInstituto Biósfera, Universidad San Francisco de Quito USFQ, Quito, Ecuador
  • | 3 cStable Isotopes Research Group and Water Resources Management Laboratory, Chemistry Department, Universidad Nacional, Heredia, Costa Rica
  • | 4 dDepartment of Earth and Environmental Sciences, The University of Texas at Arlington, Arlington, Texas
  • | 5 eLaboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany
Restricted access

Abstract

Knowledge about precipitation generation remains limited in the tropical Andes due to the lack of water stable isotope (WSI) data. Therefore, we investigated the key factors controlling the isotopic composition of precipitation in the Páramo highlands of southern Ecuador using event-based (high frequency) WSI data collected between November 2017 and October 2018. Our results show that air masses reach the study site preferentially from the eastern flank of the Andes through the Amazon basin (73.2%), the Orinoco plains (11.2%), and the Mato Grosso Massif (2.7%), whereas only a small proportion stems from the Pacific Ocean (12.9%). A combination of local and regional factors influences the δ18O isotopic composition of precipitation. Regional atmospheric features (Atlantic moisture, evapotranspiration over the Amazon rainforest, continental rain-out, and altitudinal lapse rates) are what largely control the meteoric δ18O composition. Local precipitation, temperature, and the fraction of precipitation corresponding to moderate to heavy rainfalls are also key features influencing isotopic ratios, highlighting the importance of localized convective precipitation at the study site. Contrary to δ18O, d-excess values showed little temporal variation and could not be statistically linked to regional or local hydrometeorological features. The latter reveals that large amounts of recycled moisture from the Amazon basin contribute to local precipitation regardless of season and predominant trajectories from the east. Our findings will help to improve isotope-based climatic models and enhance paleoclimate reconstructions in the southern Ecuador highlands.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Giovanny M. Mosquera, giovamosquera@gmail.com, gmosquera@usfq.edu.ec

Abstract

Knowledge about precipitation generation remains limited in the tropical Andes due to the lack of water stable isotope (WSI) data. Therefore, we investigated the key factors controlling the isotopic composition of precipitation in the Páramo highlands of southern Ecuador using event-based (high frequency) WSI data collected between November 2017 and October 2018. Our results show that air masses reach the study site preferentially from the eastern flank of the Andes through the Amazon basin (73.2%), the Orinoco plains (11.2%), and the Mato Grosso Massif (2.7%), whereas only a small proportion stems from the Pacific Ocean (12.9%). A combination of local and regional factors influences the δ18O isotopic composition of precipitation. Regional atmospheric features (Atlantic moisture, evapotranspiration over the Amazon rainforest, continental rain-out, and altitudinal lapse rates) are what largely control the meteoric δ18O composition. Local precipitation, temperature, and the fraction of precipitation corresponding to moderate to heavy rainfalls are also key features influencing isotopic ratios, highlighting the importance of localized convective precipitation at the study site. Contrary to δ18O, d-excess values showed little temporal variation and could not be statistically linked to regional or local hydrometeorological features. The latter reveals that large amounts of recycled moisture from the Amazon basin contribute to local precipitation regardless of season and predominant trajectories from the east. Our findings will help to improve isotope-based climatic models and enhance paleoclimate reconstructions in the southern Ecuador highlands.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Giovanny M. Mosquera, giovamosquera@gmail.com, gmosquera@usfq.edu.ec

Supplementary Materials

    • Supplemental Materials (PDF 542 KB)
Save