• Ali, A., T. Lebel, and A. Amani, 2003: Invariance in the spatial structure of Sahelian rain fields at climatological scales. J. Hydrometeor., 4, 9961011, https://doi.org/10.1175/1525-7541(2003)004<0996:IITSSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AMMA-CATCH, 1990: Precipitation dataset (5 minutes rainfall), 30 long-term stations over the Niamey square degree site (16 000 km2), Niger. IRD, CNRS-INSU, OSUG, OMP, OREME, accessed 24 October 2018, https://doi.org/10.17178/AMMA-CATCH.CL.Rain.N.

    • Crossref
    • Export Citation
  • Arnaud, P., P. Cantet, and Y. Aubert, 2016: Relevance of an at-site flood frequency analysis method for extreme events based on stochastic simulation of hourly rainfall. Hydrol. Sci. J., 61, 3649, https://doi.org/10.1080/02626667.2014.965174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balme, M., T. Vischel, T. Lebel, C. Peugeot, and S. Galle, 2006: Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff: Part I: Rainfall variability analysis. J. Hydrol., 331, 336348, https://doi.org/10.1016/j.jhydrol.2006.05.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxevani, A., and J. Lennartsson, 2015: A spatiotemporal precipitation generator based on a censored latent Gaussian field. Water Resour. Res., 51, 43384358, https://doi.org/10.1002/2014WR016455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, L., and G. Mariethoz, 2017: Generating synthetic rainfall with geostatistical simulations. Wiley Interdiscip. Rev.: Water, 4, e1199, https://doi.org/10.1002/wat2.1199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, L., D. Allard, and G. Mariethoz, 2018a: Stochastic rainfall modeling at sub-kilometer scale. Water Resour. Res., 54, 41084130, https://doi.org/10.1029/2018WR022817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, L., M. Vrac, and G. Mariethoz, 2018b: Dealing with non-stationarity in sub-daily stochastic rainfall models. Hydrol. Earth Syst. Sci., 22, 59195933, https://doi.org/10.5194/hess-22-5919-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchet, J., C. Aly, T. Vischel, G. Panthou, Y. Sané, and M. D. Kane, 2018: Trend in the co-occurrence of extreme daily rainfall in West Africa since 1950. J. Geophys. Res. Atmos., 123, 15361551, https://doi.org/10.1002/2017JD027219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borgomeo, E., J. W. Hall, F. Fung, G. Watts, K. Colquhoun, and C. Lambert, 2014: Risk-based water resources planning: Incorporating probabilistic nonstationary climate uncertainties. Water Resour. Res., 50, 68506873, https://doi.org/10.1002/2014WR015558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breinl, K., G. Di Baldassarre, M. G. Lopez, M. Hagenlocher, G. Vico, and A. Rutgersson, 2017: Can weather generation capture precipitation patterns across different climates, spatial scales and under data scarcity? Sci. Rep., 7, 5449, https://doi.org/10.1038/s41598-017-05822-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burt, C. C., 2007: Extreme Weather: A Guide & Record Book. WW Norton & Company, 320 pp.

  • Chardon, J., B. Hingray, A.-C. Favre, P. Autin, J. Gailhard, I. Zin, and C. Obled, 2014: Spatial similarity and transferability of analog dates for precipitation downscaling over France. J. Climate, 27, 50565074, https://doi.org/10.1175/JCLI-D-13-00464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowpertwait, P., P. O’Connell, A. Metcalfe, and J. Mawdsley, 1996: Stochastic point process modelling of rainfall. II. Regionalisation and disaggregation. J. Hydrol., 175, 4765, https://doi.org/10.1016/S0022-1694(96)80005-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Amato, N., and T. Lebel, 1998: On the characteristics of the rainfall events in the Sahel with a view to the analysis of climatic variability. Int. J. Climatol., 18, 955974, https://doi.org/10.1002/(SICI)1097-0088(199807)18:9<955::AID-JOC236>3.0.CO;2-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Descroix, L., P. Genthon, O. Amogu, J.-L. Rajot, D. Sighomnou, and M. Vauclin, 2012: Change in Sahelian rivers hydrograph: The case of recent red floods of the Niger River in the Niamey region. Global Planet. Change, 9899, 1830, https://doi.org/10.1016/j.gloplacha.2012.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, X., 2002: Conditional simulation of nongaussian random functions. Math. Geol., 34, 79100, https://doi.org/10.1023/A:1014031528091.

  • Evin, G., A.-C. Favre, and B. Hingray, 2018: Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrol. Earth Syst. Sci., 22, 655672, https://doi.org/10.5194/hess-22-655-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Féral, L., H. Sauvageot, L. Castanet, and J. Lemorton, 2003: Hycell—A new hybrid model of the rain horizontal distribution for propagation studies: 1. Modeling of the rain cell. Radio Sci., 38, 1056, https://doi.org/10.1029/2002RS002802.

    • Search Google Scholar
    • Export Citation
  • Ferraris, L., S. Gabellani, N. Rebora, and A. Provenzale, 2003: A comparison of stochastic models for spatial rainfall downscaling. Water Resour. Res., 39, 1368, https://doi.org/10.1029/2003WR002504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furrer, E. M., and R. W. Katz, 2008: Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resour. Res., 44, W12439, https://doi.org/10.1029/2008WR007316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillot, G., 1999: Approximation of Sahelian rainfall fields with meta-Gaussian random functions. Stochastic Environ. Res. Risk Assess., 13, 100112, https://doi.org/10.1007/s004770050034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillot, G., and T. Lebel, 1999a: Approximation of sahelian rainfall fields with meta-Gaussian random functions. Stochastic Environ. Res. Risk Assess., 13, 113130, https://doi.org/10.1007/s004770050035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillot, G., and T. Lebel, 1999b: Disaggregation of Sahelian mesoscale convective system rain fields: Further developments and validation. J. Geophys. Res., 104, 31 53331 551, https://doi.org/10.1029/1999JD900986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilloteau, C., R. Roca, M. Gosset, and V. Venugopal, 2018: Stochastic generation of precipitation fraction at high resolution with a multiscale constraint from satellite observations. Quart. J. Roy. Meteor. Soc., 144, 176190, https://doi.org/10.1002/qj.3314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebel, T., I. Braud, and J.-D. Creutin, 1998: A space-time rainfall disaggregation model adapted to Sahelian mesoscale convective complexes. Water Resour. Res., 34, 17111726, https://doi.org/10.1029/98WR00434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebel, T., A. Diedhiou, and H. Laurent, 2003: Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales. J. Geophys. Res., 108, 8389, https://doi.org/10.1029/2001JD001580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leblois, E., and J.-D. Creutin, 2013: Space-time simulation of intermittent rainfall with prescribed advection field: Adaptation of the turning band method. Water Resour. Res., 49, 33753387, https://doi.org/10.1002/wrcr.20190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Z. , J. Li, and X. Shi, 2017: Links between the spatial structure of weather generator and hydrological modeling. Theor. Appl. Climatol., 128, 103111, https://doi.org/10.1007/s00704-015-1691-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, F., E. Volpi, D. Koutsoyiannis, and F. Serinaldi, 2017: A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall. Water Resour. Res., 53, 45864605, https://doi.org/10.1002/2017WR020529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, https://doi.org/10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onibon, H., T. Lebel, A. Afouda, and G. Guillot, 2004: Gibbs sampling for conditional spatial disaggregation of rain fields. Water Resour. Res., 40, W08401, https://doi.org/10.1029/2003WR002009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panthou, G., T. Vischel, and T. Lebel, 2014: Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol., 34, 39984006, https://doi.org/10.1002/joc.3984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panthou, G., and Coauthors, 2018: Rainfall intensification in tropical semi-arid regions: The Sahelian case. Environ. Res. Lett., 13, 064013, https://doi.org/10.1088/1748-9326/AAC334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paschalis, A., P. Molnar, S. Fatichi, and P. Burlando, 2013: A stochastic model for high-resolution space-time precipitation simulation. Water Resour. Res., 49, 84008417, https://doi.org/10.1002/2013WR014437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peleg, N., E. Shamir, G. Konstantine, and E. Morin, 2015: A framework for assessing hydrological regime sensitivity to climate change in a convective rainfall environment: A case study of two medium-sized eastern Mediterranean catchments, Israel. Hydrol. Earth Syst. Sci., 19, 567581, https://doi.org/10.5194/hess-19-567-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peleg, N., S. Fatichi, A. Paschalis, P. Molnar, and P. Burlando, 2017: An advanced stochastic weather generator for simulating 2-D high-resolution climate variables. J. Adv. Model. Earth Syst., 9, 15951627, https://doi.org/10.1002/2016MS000854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peleg, N., C. Skinner, S. Fatichi, and P. Molnar, 2020: Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response. Earth Surf. Dyn., 8, 1736, https://doi.org/10.5194/esurf-8-17-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peres, D., and A. Cancelliere, 2018: Modeling impacts of climate change on return period of landslide triggering. J. Hydrol., 567, 420434, https://doi.org/10.1016/j.jhydrol.2018.10.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raut, B. A., A. W. Seed, M. J. Reeder, and C. Jakob, 2018: A multiplicative cascade model for high-resolution space-time downscaling of rainfall. J. Geophys. Res. Atmos., 123, 20502067, https://doi.org/10.1002/2017JD027148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renard, B., D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, and S. W. Franks, 2011: Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation. Water Resour. Res., 47, W11516, https://doi.org/10.1029/2011WR010643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schleiss, M., S. Chamoun, and A. Berne, 2014: Stochastic simulation of intermittent rainfall using the concept of “dry drift”. Water Resour. Res., 50, 23292349, https://doi.org/10.1002/2013WR014641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serinaldi, F., 2010: Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models. Nonlinear Processes Geophys., 17, 697714, https://doi.org/10.5194/npg-17-697-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sighomnou, D., and Coauthors, 2013: La crue de 2012 à Niamey: un paroxysme du paradoxe du Sahel? Sci. Changements Planet./Secheresse, 24, 313.

    • Search Google Scholar
    • Export Citation
  • Sørup, H. J. D., O. B. Christensen, K. Arnbjerg-Nielsen, and P. S. Mikkelsen, 2016: Downscaling future precipitation extremes to urban hydrology scales using a spatio-temporal Neyman–Scott weather generator. Hydrol. Earth Syst. Sci., 20, 13871403, https://doi.org/10.5194/hess-20-1387-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stehlík, J., and A. Bárdossy, 2002: Multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation. J. Hydrol., 256, 120141, https://doi.org/10.1016/S0022-1694(01)00529-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Coauthors, 2017: Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature, 544, 475478, https://doi.org/10.1038/nature22069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troutman, B. M., 1983: Runoff prediction errors and bias in parameter estimation induced by spatial variability of precipitation. Water Resour. Res., 19, 791810, https://doi.org/10.1029/WR019i003p00791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaittinada Ayar, P., J. Blanchet, E. Paquet, and D. Penot, 2019: Space-time simulation of precipitation based on weather pattern sub-sampling and meta-Gaussian model. J. Hydrol., 581, 124451, https://doi.org/10.1016/J.JHYDROL.2019.124451.

    • Search Google Scholar
    • Export Citation
  • Verdin, A., B. Rajagopalan, W. Kleiber, G. Podestá, and F. Bert, 2018: A conditional stochastic weather generator for seasonal to multi-decadal simulations. J. Hydrol., 556, 835846, https://doi.org/10.1016/j.jhydrol.2015.12.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vischel, T., T. Lebel, S. Massuel, and B. Cappelaere, 2009: Conditional simulation schemes of rain fields and their application to rainfall–runoff modeling studies in the Sahel. J. Hydrol., 375, 273286, https://doi.org/10.1016/j.jhydrol.2009.02.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, C., 2019: Evaluating hydrological changes in semi-arid West Africa: Detection of past trends in extremes and framework for modeling the future. Ph.D. thesis, University of Joseph Fourier, 217 pp.

  • Wilcox, C., and Coauthors, 2018: Trends in hydrological extremes in the Senegal and Niger Rivers. J. Hydrol., 566, 531545, https://doi.org/10.1016/j.jhydrol.2018.07.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1998: Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol., 210, 178191, https://doi.org/10.1016/S0022-1694(98)00186-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2010: Use of stochastic weather generators for precipitation downscaling. Wiley Interdiscip. Rev.: Climate Change, 1, 898907, https://doi.org/10.1002/wcc.85.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and R. L. Wilby, 1999: The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr., 23, 329357, https://doi.org/10.1177/030913339902300302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, C. B., J. B. Valdes, and I. Rodriguez-Iturbe, 1979: On the influence of the spatial distribution of rainfall on storm runoff. Water Resour. Res., 15, 321328, https://doi.org/10.1029/WR015i002p00321.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 79 79 54
Full Text Views 15 15 8
PDF Downloads 25 25 13

Stochastorm: A Stochastic Rainfall Simulator for Convective Storms

View More View Less
  • 1 Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, Grenoble, France
© Get Permissions
Restricted access

Abstract

Stochastic rainfall generators aim to reproduce the main statistical features of rainfall at small spatial and temporal scales. The simulated synthetic rainfall series are recognized as suitable for use with impact analysis in water, agricultural, and ecological management. Convection-driven precipitation, dominant in certain regions of the world such as the intertropical belt regions, presents properties that require specific consideration when modeling: (i) strong rainfall intermittency, (ii) high variability of intensities within storms, (iii) strong spatiotemporal correlation of intensities, and (iv) marked seasonality of storm properties. In this article, improvements for an existing stochastic generator of rainfall fields that models convective storms are presented. Notable novelties include (i) the ability to model precipitation event timing, (ii) an improved temporal disaggregation scheme representing the rainfall distribution at subevent scales, and (iii) using covariates to reflect seasonal changes in precipitation occurrence and marginal distribution parameters. Extreme values are explicitly considered in the distribution of storm event intensities. The simulator is calibrated and validated using 28 years of 5-min precipitation data from the 30-rain-gauge AMMA-CATCH network in the Sahelian region of southwest Niger. Both large propagative systems and smaller local convective precipitation are generated. Results show that simulator improvements coherently represent the local climatology. The simulator can generate scenarios for impact studies with accurate representation of convective precipitation characteristics.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Théo Vischel, theo.vischel@univ-grenoble-alpes.fr

Abstract

Stochastic rainfall generators aim to reproduce the main statistical features of rainfall at small spatial and temporal scales. The simulated synthetic rainfall series are recognized as suitable for use with impact analysis in water, agricultural, and ecological management. Convection-driven precipitation, dominant in certain regions of the world such as the intertropical belt regions, presents properties that require specific consideration when modeling: (i) strong rainfall intermittency, (ii) high variability of intensities within storms, (iii) strong spatiotemporal correlation of intensities, and (iv) marked seasonality of storm properties. In this article, improvements for an existing stochastic generator of rainfall fields that models convective storms are presented. Notable novelties include (i) the ability to model precipitation event timing, (ii) an improved temporal disaggregation scheme representing the rainfall distribution at subevent scales, and (iii) using covariates to reflect seasonal changes in precipitation occurrence and marginal distribution parameters. Extreme values are explicitly considered in the distribution of storm event intensities. The simulator is calibrated and validated using 28 years of 5-min precipitation data from the 30-rain-gauge AMMA-CATCH network in the Sahelian region of southwest Niger. Both large propagative systems and smaller local convective precipitation are generated. Results show that simulator improvements coherently represent the local climatology. The simulator can generate scenarios for impact studies with accurate representation of convective precipitation characteristics.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Théo Vischel, theo.vischel@univ-grenoble-alpes.fr
Save