• Abdi, A., Y. Hassanzadeh, and T. B. M. J. Ouarda, 2017a: Regional frequency analysis using Growing Neural Gas network. J. Hydrol., 550, 92102, https://doi.org/10.1016/j.jhydrol.2017.04.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abdi, A., Y. Hassanzadeh, S. Talatahari, A. Fakheri-Fard, R. Mirabbasi, and T. B. M. J. Ouarda, 2017b: Multivariate regional frequency analysis: Two new methods to increase the accuracy of measures. Adv. Water Resour., 107, 290300, https://doi.org/10.1016/j.advwatres.2017.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abrahams, A. D., and J. J. Flint, 1983: Geological controls on the topological properties of some trellis channel networks. Geol. Soc. Amer. Bull., 94, 8091, https://doi.org/10.1130/0016-7606(1983)94<80:GCOTTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alobaidi, M. H., P. R. Marpu, T. B. M. J. Ouarda, and F. Chebana, 2015: Regional frequency analysis at ungauged sites using a two-stage resampling generalized ensemble framework. Adv. Water Resour., 84, 103111, https://doi.org/10.1016/j.advwatres.2015.07.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argialas, D., J. Lyon, and O. Mintzer, 1988: Quantitative description and classification of drainage patterns. Photogramm. Eng. Remote Sens., 54, 505509.

    • Search Google Scholar
    • Export Citation
  • Aziz, K., A. Rahman, G. Fang, and S. Shrestha, 2014: Application of artificial neural networks in regional flood frequency analysis: A case study for Australia. Stochastic Environ. Res. Risk Assess., 28, 541554, https://doi.org/10.1007/s00477-013-0771-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beable, M. E., and A. I. McKerchar, 1982: Regional flood estimation in New Zealand. Water and Soil Tech. Publ. 20, 139 pp.

  • Besaw, L., D. M. Rizzo, P. R. Bierman, and W. R. Hackett, 2010: Advances in ungauged streamflow prediction using artificial neural networks. J. Hydrol., 386, 2737, https://doi.org/10.1016/j.jhydrol.2010.02.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burbank, D. W., 1992: Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357, 680683, https://doi.org/10.1038/357680a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., and P. H. Whitfield, 2002: Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. J. Hydrol., 259, 136151, https://doi.org/10.1016/S0022-1694(01)00581-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellarin, A., D. H. Burn, and A. Brath, 2001: Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. J. Hydrol., 241, 270285, https://doi.org/10.1016/S0022-1694(00)00383-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chebana, F., and T. B. M. J. Ouarda, 2007: Multivariate L-moment homogeneity test. Water Resour. Res., 43, W08406, https://doi.org/10.1029/2006WR005639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chebana, F., and T. B. M. J. Ouarda, 2008: Depth and homogeneity in regional flood frequency analysis. Water Resour. Res., 44, W11422, https://doi.org/10.1029/2007WR006771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chebana, F., and T. B. M. J. Ouarda, 2009: Index flood-based multivariate regional frequency analysis. Water Resour. Res., 45, W10435, https://doi.org/10.1029/2008WR007490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chokmani, K., T. B. M. J. Ouarda, S. Hamilton, M. H. Ghedira, and H. Gingras, 2008: Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques. J. Hydrol., 349, 383396, https://doi.org/10.1016/j.jhydrol.2007.11.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, K. G., 1989: The role of mantle plumes in the development of continental drainage patterns. Nature, 342, 873877, https://doi.org/10.1038/342873a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalrymple, T., 1960: Flood-frequency analyses. Manual of Hydrology: Part 3. Flood-flow techniques, USGS Water-Supply Paper 1543-A, 80 pp., https://pubs.usgs.gov/wsp/1543a/report.pdf.

  • Daniel, J., 1981: Drainage density as an index of climatic geomorphology. J. Hydrol., 50, 147154, https://doi.org/10.1016/0022-1694(81)90065-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniell, T. M., 1991: Neural network: Application in hydrology and water resources engineering. Int. Hydrology Water Resources Symp., Perth, Australia, Institute of Engineers, 797–802.

  • Dawson, C. W., and R. L. Wilby, 2001: Hydrological modelling using artificial neural networks. Prog. Phys. Geogr., 25, 80108, https://doi.org/10.1177/030913330102500104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, C. W., R. J. Abrahart, A. Y. Shamseldin, and R. L. Wilby, 2006: Flood estimation at ungauged sites using artificial neural networks. J. Hydrol., 319, 391409, https://doi.org/10.1016/j.jhydrol.2005.07.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietterich, T. G., 1997: Machine-learning research. AI Mag., 18 (4), 97, https://doi.org/10.1609/aimag.v18i4.1324.

  • Durocher, M., F. Chebana, and T. B. M. J. Ouarda, 2016: Delineation of homogenous regions using hydrological variables predicted by projection pursuit regression. Hydrol. Earth Syst. Sci., 20, 47174729, https://doi.org/10.5194/hess-20-4717-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durrans, S. R., and S. Tomic, 1996: Regionalization of low-flow frequency estimates: An Alabama case study. J. Amer. Water Resour. Assoc., 32, 2337, https://doi.org/10.1111/j.1752-1688.1996.tb03431.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faridzad, M., T. Yang, K. Hsu, S. Sorooshian, and C. Xiao, 2018: Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information. J. Hydrol., 563, 123142, https://doi.org/10.1016/j.jhydrol.2018.05.071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farquharson, F. A. K., J. R. Meigh, and J. V. Sutcliffe, 1992: Regional flood frequency analysis in arid and semi-arid areas. J. Hydrol., 138, 487501, https://doi.org/10.1016/0022-1694(92)90132-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flavell, D., 1983: Design flood estimation in Western Australia. Waterway Analysis and Design: NAASRA BEC 1983 Seminar, Adelaide, South Australia, Australia, National Association of Australian State Road Authorities, 23 pp.

  • Folmar, N. D., and A. C. Miller, 2000: Historical perspective of the NRCS lag time equation. Transportation Research Board 70th Annual Meeting, Washington, DC, Transportation Research Board.

  • Gloaguen, R., P. R. Marpu, and I. Niemeyer, 2007: Automatic extraction of faults and fractal analysis from remote sensing data. Nonlinear Processes Geophys., 14, 131138, https://doi.org/10.5194/npg-14-131-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, R., T. B. M. J. Ouarda, P. R. Marpu, M. M. Allam, E. A. B. Eltahir, and S. Pearson, 2016: Water budget analysis in arid regions, application to the United Arab Emirates. Water, 8, 415, https://doi.org/10.3390/w8090415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govindaraju, R. S., 2000: Artificial neural networks in hydrology II. Hydrological applications. J. Hydrol. Eng., 5, 124137, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grover, P. L., D. H. Burn, and J. M. Cunderlik, 2002: A comparison of index flood estimation procedures for ungauged catchments. Can. J. Civ. Eng., 29, 734741, https://doi.org/10.1139/l02-065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackney, C., and P. Carling, 2011: The occurrence of obtuse junction angles and changes in channel width below tributaries along the Mekong River, south-east Asia. Earth Surf. Processes Landforms, 36, 15631576, https://doi.org/10.1002/esp.2165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddad, K., and A. Rahman, 2012: Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework–Quantile Regression vs. Parameter Regression Technique. J. Hydrol., 430–431, 142161, https://doi.org/10.1016/j.jhydrol.2012.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagan, M. T., and M. B. Menhaj, 1994: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw., 5, 989993, https://doi.org/10.1109/72.329697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamon, W. R., 1960: Estimating potential evapotranspiration. B.S. thesis, Massachusetts Institute of Technology, 75 pp.

  • Horton, R. E., 1945: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Amer. Bull., 56, 275370, https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J., and J. R. Wallis, 1993: Some statistics useful in regional frequency analysis. Water Resour. Res., 29, 271281, https://doi.org/10.1029/92WR01980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J., and J. R. Wallis, 1997: Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, 242 pp.

  • Howard, A. D., 1967: Drainage analysis in geologic interpretation: A summation. Amer. Assoc. Pet. Geol. Bull., 51, 22462259, https://doi.org/10.1306/5D25C26D-16C1-11D7-8645000102C1865D.

    • Search Google Scholar
    • Export Citation
  • Hua, J., Z. Liang, and Z. Yu, 2003: A modified rational formula for flood design in small basins. J. Amer. Water Resour. Assoc., 39, 10171025, https://doi.org/10.1111/j.1752-1688.2003.tb03689.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichoku, C., and J. Chorowicz, 1994: A numerical approach to the analysis and classification of channel network patterns. Water Resour. Res., 30, 161174, https://doi.org/10.1029/93WR02279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jennings, M. E., W. O. Thomas Jr., and H. C. Riggs, 1994: Nationwide summary of U.S. Geological Survey regional regression equations for estimating magnitude and frequency of floods for ungaged sites, 1993. USGS Water-Resources Investigations Rep. 94-4002, 196 pp., https://doi.org/10.3133/wri944002.

    • Crossref
    • Export Citation
  • Jung, K., and T. B. M. J. Ouarda, 2015: Analysis and classification of channel network types for intermittent streams in the United Arab Emirates and Oman. J. Civil Environ. Eng., 5, 1000183, https://doi.org/10.4172/2165-784X.1000183.

    • Search Google Scholar
    • Export Citation
  • Jung, K., J. D. Niemann, and X. Huang, 2011: Under what conditions do parallel river networks occur? Geomorphology, 132, 260271, https://doi.org/10.1016/j.geomorph.2011.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, K., P. R. Marpu, and T. B. M. J. Ouarda, 2015: Improved classification of drainage networks using junction angles and secondary tributary lengths. Geomorphology, 239, 4147, https://doi.org/10.1016/j.geomorph.2015.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, K., P. R. Marpu, and T. B. M. J. Ouarda, 2017: Impact of river network type on the time of concentration. Arab. J. Geosci., 10, 546, https://doi.org/10.1007/s12517-017-3323-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, K., E. Kim, and B. Kang, 2019: Estimation of low-flow in South Korean river basins using a Canonical Correlation Analysis and Neural Network (CCA-NN) based regional frequency analysis. Atmosphere, 10, 695, https://doi.org/10.3390/atmos10110695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1948: Rank Correlation Methods. Charles Griffin, 160 pp.

  • Kjeldsen, T. R., and D. A. Jones, 2010: Predicting the index flood in ungauged UK catchments: On the link between data-transfer and spatial model error structure. J. Hydrol., 387, 19, https://doi.org/10.1016/j.jhydrol.2010.03.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luk, K. C., J. E. Ball, and A. Sharma, 2001: An application of artificial neural networks for rainfall forecasting. Math. Comput. Modell., 33, 683693, https://doi.org/10.1016/S0895-7177(00)00272-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maliva, R., and T. Missimer, 2012: Aridity and drought. Arid Lands Water Evaluation and Management. Springer, 21–39.

    • Crossref
    • Export Citation
  • Matalas, N. C., J. R. Slack, and J. R. Wallis, 1975: Regional skew in search of a parent. Water Resour. Res., 11, 815826, https://doi.org/10.1029/WR011i006p00815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mejia, A. I., and J. D. Niemann, 2008: Identification and characterization of dendritic, parallel, pinnate, rectangular, and trellis networks based on deviations from planform self-similarity. J. Geophys. Res., 113, F02015, https://doi.org/10.1029/2007JF000781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. G., 1964: A trustworthy jackknife. Ann. Math. Stat., 35, 15941605, https://doi.org/10.1214/aoms/1177700384.

  • Mosaffaie, J., 2015: Comparison of two methods of regional flood frequency analysis by using L-moments. Water Res., 42, 313321, https://doi.org/10.1134/S0097807815030112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosley, M. P., 1972: An experimental study of rill erosion. M.S. thesis, Colorado State University, 118 pp.

  • Muttiah, R. S., R. Srinivasan, and P. M. Allen, 1997: Prediction of two year peak stream discharges using neural networks. J. Amer. Water Resour. Assoc., 33, 625630, https://doi.org/10.1111/j.1752-1688.1997.tb03537.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., and C. Shu, 2009: Regional low-flow frequency analysis using single and ensemble artificial neural networks. Water Resour. Res., 45, W11428, https://doi.org/10.1029/2008WR007196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., C. Girard, G. S. Cavadias, and B. Bobée, 2001: Regional flood frequency estimation with canonical correlation analysis. J. Hydrol., 254, 157173, https://doi.org/10.1016/S0022-1694(01)00488-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., C. Charron, and A. St-Hilaire, 2008: Statistical models and the estimation of low flows. Can. Water Resour. J., 33, 195206, https://doi.org/10.4296/cwrj3302195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., C. Charron, Y. Hundecha, A. St-Hilaire, and F. Chebana, 2018: Introduction of the GAM model for regional low-flow frequency analysis at ungauged basins and comparison with commonly used approaches. Environ. Modell. Software, 109, 256271, https://doi.org/10.1016/j.envsoft.2018.08.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pallard, B., A. Castellarin, and A. Montanari, 2009: A look at the links between drainage density and flood statistics. Hydrol. Earth Syst. Sci., 13, 10191029, https://doi.org/10.5194/hess-13-1019-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandey, G. R., and V. T. V. Nguyen, 1999: A comparative study of regression based methods in regional flood frequency analysis. J. Hydrol., 225, 92101, https://doi.org/10.1016/S0022-1694(99)00135-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parvis, M., 1950: Drainage pattern significance in airphoto identification of soils and bedrocks. Photogramm. Eng., 16, 375409.

  • Phillips, L. F., and S. Schumm, 1987: Effect of regional slope on drainage networks. Geology, 15, 813816, https://doi.org/10.1130/0091-7613(1987)15<813:EORSOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahman, A., C. Charron, T. B. M. J. Ouarda, and F. Chebana, 2018: Development of regional flood frequency analysis techniques using generalized additive models for Australia. Stochastic Environ. Res. Risk Assess., 32, 123139, https://doi.org/10.1007/s00477-017-1384-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Requena, A. I., T. B. M. J. Ouarda, and F. Chebana, 2017: Flood frequency analysis at ungauged sites based on regionally estimated streamflows. J. Hydrometeor., 18, 25212539, https://doi.org/10.1175/JHM-D-16-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Requena, A. I., T. B. M. J. Ouarda, and F. Chebana, 2018: Low-flow frequency analysis at ungauged sites based on regionally estimated streamflows. J. Hydrol., 563, 523532, https://doi.org/10.1016/j.jhydrol.2018.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidou, O., T. B. M. J. Ouarda, M. Barbet, P. Bruneau, and B. Bobée, 2006: A parametric Bayesian combination of local and regional information in flood frequency analysis. Water Resour. Res., 42, W11408, https://doi.org/10.1029/2005WR004397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, J., and D. Tu, 2012: The Jackknife and Bootstrap. Springer Science & Business Media, 517 pp.

  • Sharifi, S., and S. M. Hosseini, 2011: Methodology for identifying the best equations for estimating the time of concentration of watersheds in a particular region. J. Irrig. Drain. Eng., 137, 712719, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, C., and D. H. Burn, 2004: Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res., 40, W09301, https://doi.org/10.1029/2003WR002816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, C., and T. B. M. J. Ouarda, 2007: Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resour. Res., 43, W07438, https://doi.org/10.1029/2006WR005142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stadler, S. J., 1987: Aridity indexes. Climatology. Springer, 102–107.

    • Crossref
    • Export Citation
  • Turan, M. E., and M. A. Yurdusev, 2009: River flow estimation from upstream flow records by artificial intelligence methods. J. Hydrol., 369, 7177, https://doi.org/10.1016/j.jhydrol.2009.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velde, B., J. Dubois, G. Touchard, and A. Badri, 1990: Fractal analysis of fractures in rocks: The Cantor’s dust method. Tectonophysics, 179, 345352, https://doi.org/10.1016/0040-1951(90)90300-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wald, A., and J. Wolfowitz, 1943: An exact test for randomness in the non-parametric case based on serial correlation. Ann. Math. Stat., 14, 378388, https://doi.org/10.1214/aoms/1177731358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, K., 1969: The Arid Zones. Aldine Publishing Co., 175 pp.

  • Ward, J. H., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, https://doi.org/10.1080/01621459.1963.10500845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wazneh, H., F. Chebana, and T. B. M. J. Ouarda, 2016: Identification of hydrological neighborhoods for regional flood frequency analysis using statistical depth function. Adv. Water Resour., 94, 251263, https://doi.org/10.1016/j.advwatres.2016.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biom. Bull., 1, 8083, https://doi.org/10.2307/3001968.

  • Wong, T. S., 2005: Assessment of time of concentration formulas for overland flow. J. Irrig. Drain. Eng., 131, 383387, https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(383).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaman, M. A., A. Rahman, and K. Haddad, 2012: Regional flood frequency analysis in arid regions: A case study for Australia. J. Hydrol., 475, 7483, https://doi.org/10.1016/j.jhydrol.2012.08.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 103 103 21
Full Text Views 20 20 2
PDF Downloads 23 23 2

On the Value of River Network Information in Regional Frequency Analysis

View More View Less
  • 1 Department of Civil and Environmental Engineering, Konkuk University, Gwanjin-gu, Seoul, South Korea
  • 2 Canada Research Chair in Statistical Hydro-Climatology, INRS-ETE, Quebec, Quebec, Canada
  • 3 Department of Electrical Engineering and Computer Science, Khalifa University, Masdar City, Abu Dhabi, United Arab Emirates
© Get Permissions
Restricted access

Abstract

Regional frequency analysis (RFA) is widely used in the design of hydraulic structures at locations where streamflow records are not available. RFA estimates depend on the precise delineation of homogenous regions for accurate information transfer. This study proposes new physiographical variables based on river network features and tests their potential to improve the accuracy of hydrological feature estimates. Information about river network types is used both in the definition of homogenous regions and in the estimation process. Data from 105 river basins in arid and semiarid regions of the United States were used in our analysis. Artificial neural network ensemble models and canonical correlation analysis were used to produce flood quantile estimates, which were validated through tenfold cross and jackknife validations. We conducted analysis for model performance based on statistical indices, such as the Nash–Sutcliffe efficiency, root-mean-square error, relative root-mean-square error, mean absolute error, and relative mean bias. Among various combinations of variables, a model with 10 variables produced the best performance. Further, 49, 36, and 20 river networks in the 105 basins were classified as dendritic, pinnate, and trellis networks, respectively. The model with river network classification for the homogenous regions appeared to provide a superior performance compared with a model without such classification. The results indicated that including our proposed combination of variables could improve the accuracy of RFA flood estimates with the classification of the network types. This finding has considerable implications for hydraulic structure design.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kichul Jung, jkichul11@naver.com

Abstract

Regional frequency analysis (RFA) is widely used in the design of hydraulic structures at locations where streamflow records are not available. RFA estimates depend on the precise delineation of homogenous regions for accurate information transfer. This study proposes new physiographical variables based on river network features and tests their potential to improve the accuracy of hydrological feature estimates. Information about river network types is used both in the definition of homogenous regions and in the estimation process. Data from 105 river basins in arid and semiarid regions of the United States were used in our analysis. Artificial neural network ensemble models and canonical correlation analysis were used to produce flood quantile estimates, which were validated through tenfold cross and jackknife validations. We conducted analysis for model performance based on statistical indices, such as the Nash–Sutcliffe efficiency, root-mean-square error, relative root-mean-square error, mean absolute error, and relative mean bias. Among various combinations of variables, a model with 10 variables produced the best performance. Further, 49, 36, and 20 river networks in the 105 basins were classified as dendritic, pinnate, and trellis networks, respectively. The model with river network classification for the homogenous regions appeared to provide a superior performance compared with a model without such classification. The results indicated that including our proposed combination of variables could improve the accuracy of RFA flood estimates with the classification of the network types. This finding has considerable implications for hydraulic structure design.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kichul Jung, jkichul11@naver.com
Save