• Anderson, R. G., M.-H. Lo, and J. S. Famiglietti, 2012: Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation. Geophys. Res. Lett., 39, L16401, https://doi.org/10.1029/2012GL052400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asoka, A., and V. Mishra, 2015: Prediction of vegetation anomalies to improve food security and water management in India. Geophys. Res. Lett., 42, 52905298, https://doi.org/10.1002/2015GL063991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asoka, A., T. Gleeson, Y. Wada, and V. Mishra, 2017: Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci., 10, 109117, https://doi.org/10.1038/ngeo2869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asoka, A., Y. Wada, R. Fishman, and V. Mishra, 2018: Strong linkage between precipitation intensity and monsoon season groundwater recharge in India. Geophys. Res. Lett., 45, 55365544, https://doi.org/10.1029/2018GL078466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandyopadhyay, P. K., and S. Mallick, 2003: Actual evapotranspiration and crop coefficients of wheat (Triticum aestivum) under varying moisture levels of humid tropical canal command area. Agric. Water Manage., 59, 3347, https://doi.org/10.1016/S0378-3774(02)00112-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhanja, S. N., A. Mukherjee, D. Saha, I. Velicogna, and J. S. Famiglietti, 2016: Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. J. Hydrol., 543, 729738, https://doi.org/10.1016/j.jhydrol.2016.10.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burn, H. B., and M. A. H. Elnur, 2002: Detection of hydrologic trends and variability. J. Hydrol., 255, 107122, https://doi.org/10.1016/S0022-1694(01)00514-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, G., C. Zheng, B. R. Scanlon, J. Liu, and W. Li, 2013: Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour. Res., 49, 159175, https://doi.org/10.1029/2012WR011899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CGWB, 2014: Groundwater Year Book 2013-2014. Central Ground Water Board, 81 pp., http://admin.indiaenvironmentportal.org.in/files/file/Ground%20Water%20Year%20Book%202013-14.pdf.

  • Cuthbert, M. O., T. Gleeson, N. Moosdorf, K. M. Befus, A. Schneider, J. Hartmann, and B. Lehner, 2019: Global patterns and dynamics of climate–groundwater interactions. Nat. Climate Change, 9, 137141, https://doi.org/10.1038/s41558-018-0386-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalin, C., Y. Wada, T. Kastner, and M. J. Puma, 2017: Groundwater depletion embedded in international food trade. Nature, 543, 700704, https://doi.org/10.1038/nature21403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimri, A. P., 2013: Intraseasonal oscillation associated with the Indian winter monsoon. J. Geophys. Res. Atmos., 118, 11891198, https://doi.org/10.1002/JGRD.50144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döll, P., H. Hoffmann-Dobrev, F. T. Portmann, S. Siebert, A. Eicker, M. Rodell, G. Strassberg, and B. R. Scanlon, 2012: Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn., 59–60, 143156, https://doi.org/10.1016/j.jog.2011.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2017: ESA CCI soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fishman, R. M., N. Devineni, and S. Raman, 2015: Can improved agricultural water use efficiency save India’s groundwater? Environ. Res. Lett., 10, 084022, https://doi.org/10.1088/1748-9326/10/8/084022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fishman, R. M., T. Siegfried, P. Raj, V. Modi, and U. Lall, 2011: Over-extraction from shallow bedrock versus deep alluvial aquifers: Reliability versus sustainability considerations for India’s groundwater irrigation. Water Resour. Res., 47, W00L05, https://doi.org/10.1029/2011WR010617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girotto, M., G. J. M. De Lannoy, R. H. Reichle, M. Rodell, C. Draper, S. N. Bhanja, and A. Mukherjee, 2017: Benefits and pitfalls of GRACE data assimilation: A case study of terrestrial water storage depletion in India. Geophys. Res. Lett., 44, 41074115, https://doi.org/10.1002/2017GL072994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleeson, T., J. VanderSteen, M. A. Sophocleous, M. Taniguchi, W. M. Alley, D. M. Allen, and Y. Zhou, 2010: Groundwater sustainability strategies. Nat. Geosci., 3, 378379, https://doi.org/10.1038/ngeo881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granger, C. W., 1969: Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424438, https://doi.org/10.2307/1912791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, K., J. A. Berry, Y. Zhang, J. Joiner, L. Guanter, G. Badgley, and D. B. Lobell, 2016: Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Global Change Biol., 22, 716726, https://doi.org/10.1111/gcb.13136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, K., J. Wu, J. S. Kimball, M. C. Anderson, S. Frolking, B. Li, C. R. Hain, and D. B. Lobell, 2017: The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields. Remote Sens. Environ., 199, 333349, https://doi.org/10.1016/j.rse.2017.06.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hora, T., V. Srinivasan, and N. B. Basu, 2019: The groundwater recovery paradox in South India. Geophys. Res. Lett., 46, 96029611, https://doi.org/10.1029/2019GL083525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaur, S., and K. Vatta, 2015: Groundwater depletion in central Punjab: Pattern, access and adaptations. Curr. Sci., 108, 485490.

  • Li, X., and J. Xiao, 2019: A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens., 11, 517, https://doi.org/10.3390/rs11050517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., and Coauthors, 2018: Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. Sci. Total Environ., 625, 12081217, https://doi.org/10.1016/j.scitotenv.2017.12.268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., and M. Sophocleous, 2010: Seasonal groundwater contribution to crop-water use assessed with lysimeter observations and model simulations. J. Hydrol., 389, 325335, https://doi.org/10.1016/j.jhydrol.2010.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A., S. Shukla, K. R. Arsenault, S. Wang, C. D. Peters-Lidard, and J. P. Verdin, 2016: Evaluating ESA CCI soil moisture in East Africa. Int. J. Appl. Earth Obs. Geoinf., 48, 96109, https://doi.org/10.1016/j.jag.2016.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meghwal, R., D. Shah, and V. Mishra, 2019: On the changes in groundwater storage variability in western India using GRACE and well observations. Remote Sens. Earth Syst. Sci., 2, 260272, https://doi.org/10.1007/s41976-019-00026-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, https://doi.org/10.1073/pnas.1119150109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., R. Shah, and B. Thrasher, 2014: Soil moisture droughts under the retrospective and projected climate in India. J. Hydrometeor., 15, 22672292, https://doi.org/10.1175/JHM-D-13-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., S. Aadhar, A. Asoka, S. Pai, and R. Kumar, 2016: On the frequency of the 2015 monsoon season drought in the Indo-Gangetic plain. Geophys. Res. Lett., 43, 12 10212 112, https://doi.org/10.1002/2016GL071407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., A. Asoka, K. Vatta, and U. Lall, 2018: Groundwater depletion and associated CO2 emissions in India. Earth’s Future, 6, 16721681, https://doi.org/10.1029/2018EF000939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukherjee, A., S. N. Bhanja, and Y. Wada, 2018: Groundwater depletion causing reduction of baseflow triggering Ganges river summer drying. Sci. Rep., 8, 12049, https://doi.org/10.1038/s41598-018-30246-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahuja, S., C. Tovey, S. Foster, and H. Garduno, 2010: Deep wells and prudence: Towards pragmatic action for addressing groundwater overexploitation in India. World Bank Rep., 120 pp., http://www.indiaenvironmentportal.org.in/files/Deep%20Wells.pdf.

  • Pai, D. S., L. Sridhar, M. Rajeevan, O. P. Sreejith, N. S. Satbhai, and B. Mukhopadhyay, 2014: Development of a new high spatial resolution (0.25 degrees × 0.25 degrees) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65 (1), 118.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., C. K. Unnikrishnan, J. Bhate, K. N. Kumar, and P. P. Sreekala, 2012: Northeast monsoon over India: Variability and prediction. Meteor. Appl., 19, 226236, https://doi.org/10.1002/met.1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002, https://doi.org/10.1038/nature08238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, R. Murtugudde, K. Ashok, and B. N. Goswami, 2015: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun., 6, 7423, https://doi.org/10.1038/ncomms8423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Save, H., 2019: CSR GRACE RL06 Mascon Solutions. Texas Data Repository Dataverse, accessed 18 February 2020, https://doi.org/10.18738/T8/UN91VR.

    • Crossref
    • Export Citation
  • Save, H., S. Bettadpur, and B. D. Tapley, 2016: High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth, 121, 75477569, https://doi.org/10.1002/2016JB013007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, H. L., and V. Mishra, 2016: Hydrologic changes in Indian subcontinental river basins (1901–2012). J. Hydrometeor., 17, 26672687, https://doi.org/10.1175/JHM-D-15-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, H. L., T. Zhou, M. Huang, and V. Mishra, 2019: Strong influence of irrigation on water budget and land surface temperature in Indian subcontinental river basins. J. Geophys. Res. Atmos., 124, 14491462, https://doi.org/10.1029/2018JD029132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, T., 2009: Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ. Res. Lett., 4, 035005, https://doi.org/10.1088/1748-9326/4/3/035005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, S., V. Henrich, K. Frenken, and J. Burke, 2013: Update of the digital global map of irrigation areas to version 5. Universität Bonn and FAO, 171 pp., http://www.fao.org/3/I9261EN/i9261en.pdf.

  • Silber, J. H., P. R. Rosenbaum, and R. N. Ross, 1995: Comparing the contributions of groups of predictors: Which outcomes vary with hospital rather than patient characteristics? J. Amer. Stat. Assoc., 90, 718, https://doi.org/10.2307/2291124.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, V., and S. Lele, 2017: From groundwater regulation to integrated water management. Economic & Political Weekly, Vol. 52, Issue 31, Sameeksha Trust, Mumbai, India, 8 pp., https://www.epw.in/journal/2017/31/special-articles/groundwater-regulation-integrated-water-management.html.

  • Sun, H., X. Zhang, X. Liu, X. Liu, L. Shao, S. Chen, J. Wang, and X. Dong, 2019: Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain. Agric. Water Manage., 211, 202209, https://doi.org/10.1016/j.agwat.2018.09.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, R. G., and Coauthors, 2013: Ground water and climate change. Nat. Climate Change, 3, 322329, https://doi.org/10.1038/nclimate1744.

  • Tiwari, V. M., J. Wahr, S. C. Swenson, A. D. Rao, and B. Singh, 2009: Land water storage variation over Southern India from space gravimetry. 2009 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract G33E-06, http://adsabs.harvard.edu/abs/2009AGUFM.G33E.06T.

  • Yang, X., and Coauthors, 2015: Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. J. Hydrol., 522, 428438, https://doi.org/10.1016/j.jhydrol.2015.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 173 173 51
Full Text Views 49 49 11
PDF Downloads 66 66 13

A Strong Linkage between Seasonal Crop Growth and Groundwater Storage Variability in India

View More View Less
  • 1 Civil Engineering and Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India
© Get Permissions
Restricted access

Abstract

Groundwater is rapidly depleting in India primarily because of pumping for irrigation. However, the crucial role of crop growth at annual and seasonal time scales in groundwater storage variability remains mostly unexplored. Using the data from the Gravity Recovery Climate Experiment (GRACE) satellites and well observations, we show that crop growth is negatively correlated with groundwater storage at annual and seasonal time scales in north India. Precipitation is positively associated with groundwater storage variability at the yearly time scale in north-central India (NCI) and south India (SI). In contrast, precipitation is negatively correlated with groundwater storage from the GRACE satellites in northwest India (NWI). The negative correlation between precipitation and groundwater from the GRACE in NWI is primarily due to groundwater depletion due to anthropogenic pumping from deep aquifers. Precipitation and groundwater storage from the well observations are positively correlated in all the three regions, indicating the influence of precipitation on shallow aquifers. Analysis of the two main crop growing seasons (Rabi and Kharif) showed that crop growth is negatively related to groundwater storage in both Kharif (June–September) and Rabi seasons in north India (NWI and NCI). Groundwater contributes more than precipitation in NCI during the Kharif season and in NWI and SI during the Rabi season. Granger’s causality test showed that groundwater is a significant contributor to crop growth in NWI and NCI in both Kharif and Rabi seasons. Our results highlight the need for agricultural water management in both the crop growing seasons in north India for reducing the rapid groundwater depletion.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0085.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vimal Mishra, vmishra@iitgn.ac.in

Abstract

Groundwater is rapidly depleting in India primarily because of pumping for irrigation. However, the crucial role of crop growth at annual and seasonal time scales in groundwater storage variability remains mostly unexplored. Using the data from the Gravity Recovery Climate Experiment (GRACE) satellites and well observations, we show that crop growth is negatively correlated with groundwater storage at annual and seasonal time scales in north India. Precipitation is positively associated with groundwater storage variability at the yearly time scale in north-central India (NCI) and south India (SI). In contrast, precipitation is negatively correlated with groundwater storage from the GRACE satellites in northwest India (NWI). The negative correlation between precipitation and groundwater from the GRACE in NWI is primarily due to groundwater depletion due to anthropogenic pumping from deep aquifers. Precipitation and groundwater storage from the well observations are positively correlated in all the three regions, indicating the influence of precipitation on shallow aquifers. Analysis of the two main crop growing seasons (Rabi and Kharif) showed that crop growth is negatively related to groundwater storage in both Kharif (June–September) and Rabi seasons in north India (NWI and NCI). Groundwater contributes more than precipitation in NCI during the Kharif season and in NWI and SI during the Rabi season. Granger’s causality test showed that groundwater is a significant contributor to crop growth in NWI and NCI in both Kharif and Rabi seasons. Our results highlight the need for agricultural water management in both the crop growing seasons in north India for reducing the rapid groundwater depletion.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0085.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vimal Mishra, vmishra@iitgn.ac.in

Supplementary Materials

    • Supplemental Materials (PDF 1.71 MB)
Save