• Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnhart, T. B., N. P. Molotch, B. Livneh, A. A. Harpold, J. F. Knowles, and D. Schneider, 2016: Snowmelt rate dictates streamflow. Geophys. Res. Lett., 43, 80068016, https://doi.org/10.1002/2016GL069690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., X. Yin, S. Rajagopal, D. Stampoulis, and H. Ye, 2018: On distinguishing snowfall from rainfall using near-surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance. Quart. J. Roy. Meteor. Soc., 144, 89102, https://doi.org/10.1002/qj.3240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, and M. Hrachowitz, 2014: A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Climate Change, 4, 583586, https://doi.org/10.1038/nclimate2246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592, https://doi.org/10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2010: Moisture changes over the last millennium in arid Central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev., 29, 10551068, https://doi.org/10.1016/j.quascirev.2010.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., W. Huang, L. Jin, J. Chen, and J. Wang, 2011: Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China Earth Sci., 54, 18121821, https://doi.org/10.1007/s11430-011-4333-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., J. Sun, and K. Fan, 2012: Possible mechanism for the interdecadal change of Xinjiang summer precipitation. Chin. J. Geophys., 55, 267274, https://doi.org/10.1002/cjg2.1721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., C. Xu, Y. Chen, Y. Liu, and W. Li, 2013: Progress, challenges and prospects of eco-hydrological studies in the Tarim river basin of Xinjiang, China. Environ. Manage., 51, 138153, https://doi.org/10.1007/s00267-012-9823-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., H. Deng, B. Li, Z. Li, and C. Xu, 2014: Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quat. Int., 336, 3543, https://doi.org/10.1016/j.quaint.2013.12.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., Z. Li, G. Fang, and H. Deng, 2017: Impact of climate change on water resources in the Tianshan Mountians, Central Asia. Acta Geogr. Sin., 72, 1826, https://doi.org/10.11821/dlxb201701002.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., B. Li, Y. Fan, C. Sun, and G. Fang, 2019: Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. J. Arid Land, 11, 161179, https://doi.org/10.1007/s40333-019-0050-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2008: Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys. Res. Lett., 35, L12802, https://doi.org/10.1029/2008GL033295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, X., W. Li, Z. Ma, and P. Wang, 2007: Water-vapor source shift of Xinjiang region during the recent twenty years. Prog. Nat. Sci., 17, 569575, https://doi.org/10.1080/10020070708541037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, H., N. C. Pepin, and Y. Chen, 2017: Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos., 122, 73237341, https://doi.org/10.1002/2017JD026524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, B., K. Yang, J. Qin, L. Wang, Y. Chen, and X. He, 2014: The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol., 513, 154163, https://doi.org/10.1016/j.jhydrol.2014.03.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feiccabrino, J., W. Graff, A. Lundberg, N. Sandström, and D. Gustafsson, 2015: Meteorological knowledge useful for the improvement of snow rain separation in surface based models. Hydrology, 2, 266288, https://doi.org/10.3390/hydrology2040266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Hu, 2007: Changes in winter snowfall/precipitation ratio in the contiguous United States. J. Geophys. Res., 112, D15109, https://doi.org/10.1029/2007JD008397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 95129520, https://doi.org/10.1002/2015GL065497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froidurot, S., I. Zin, B. Hingray, and A. Gautheron, 2014: Sensitivity of precipitation phase over the Swiss Alps to different meteorological variables. J. Hydrometeor., 15, 685696, https://doi.org/10.1175/JHM-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., M. Shadeer, and R. Tiyipujiang, 2014: Study breaking mechanism of karez systems in Turpan basin. Procedia Mater. Sci., 3, 17861791, https://doi.org/10.1016/j.mspro.2014.06.288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, K., T. Ohta, and Y. Ageta, 2007: Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau. Hydrol. Processes, 21, 28822891, https://doi.org/10.1002/hyp.6505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gheyret, G., M. Anwar, and Z. Tang, 2020: Elevational patterns of temperature and humidity in the middle Tianshan Mountain area in Central Asia. J. Mt. Sci., 17, 397409, https://doi.org/10.1007/s11629-019-5481-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gjertsen, U., and V. Ødegaard, 2005: The water phase of precipitation—A comparison between observed, estimated and predicted values. Atmos. Res., 77, 218231, https://doi.org/10.1016/j.atmosres.2004.10.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L., and L. Li, 2015: Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China. Int. J. Climatol., 35, 13791393, https://doi.org/10.1002/joc.4063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halik, Ü., T. Aishan, F. Betz, A. Kurban, and A. Rouzi, 2019: Effectiveness and challenges of ecological engineering for desert riparian forest restoration along China’s largest inland river. Ecol. Eng., 127, 1122, https://doi.org/10.1016/j.ecoleng.2018.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier, 2005: Effects of temperature and precipitation variability on snowpack trends in the Western United States. J. Climate, 18, 45454561, https://doi.org/10.1175/JCLI3538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harder, P., and J. Pomeroy, 2013: Estimating precipitation phase using a psychrometric energy balance method. Hydrol. Processes, 27, 19011914, https://doi.org/10.1002/hyp.9799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., and Coauthors, 2017a: Rain or snow: Hydrologic processes, observations, prediction, and research needs. Hydrol. Earth Syst. Sci., 21, 122, https://doi.org/10.5194/hess-21-1-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., S. Rajagopal, J. B. Crews, T. Winchell, and R. Schumer, 2017b: Relative humidity has uneven effects on shifts from snow to rain over the western U.S. Geophys. Res. Lett., 44, 97429750, https://doi.org/10.1002/2017GL075046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., F. Chen, S. Feng, J. Chen, and X. Zhang, 2013: Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull., 58, 39623968, https://doi.org/10.1007/s11434-013-5970-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., J. Chen, X. Zhang, S. Feng, and F. Chen, 2015a: Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period. Sci. China Earth Sci., 58, 676684, https://doi.org/10.1007/s11430-015-5057-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., S. Feng, J. Chen, and F. Chen, 2015b: Physical mechanisms of summer precipitation variations in the Tarim basin in Northwestern China. J. Climate, 28, 35793591, https://doi.org/10.1175/JCLI-D-14-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T., A. H. Glenn, D. K. Barry, and W. D. Rovert, 2004: Changes in the proportion of precipitation occurring as snow in New England (1949–2000). J. Climate, 17, 26262636, https://doi.org/10.1175/1520-0442(2004)017<2626:CITPOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jennings, K. S., T. S. Winchell, B. Livneh, and N. P. Molotch, 2018: Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere. Nat. Commun., 9, 1148, https://doi.org/10.1038/s41467-018-03629-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrol. Processes, 22, 50675085, https://doi.org/10.1002/hyp.7131.

  • Klos, P. Z., T. E. Link, and J. T. Abatzoglou, 2014: Extent of the rain-snow transition zone in the western U.S. under historic and projected climate. Geophys. Res. Lett., 41, 45604568, https://doi.org/10.1002/2014GL060500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knowles, N., M. D. Dettinger, and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559, https://doi.org/10.1175/JCLI3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kongoli, C., H. Meng, J. Dong, and R. Ferraro, 2015: A snowfall detection algorithm over land utilizing high-frequency passive microwave measurements-Application to ATMS. J. Geophys. Res. Atmos., 120, 19181932, https://doi.org/10.1002/2014JD022427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., L. Milani, N. B. Wood, S. A. Tushaus, R. Bennartz, and T. S. L’Ecuyer, 2016: A shallow cumuliform snowfall census using spaceborne radar. J. Hydrometeor., 17, 12611279, https://doi.org/10.1175/JHM-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapp, S., J. Byrne, I. Townshend, and S. Kienzle, 2005: Climate warming impacts on snowpack accumulation in an alpine watershed. Int. J. Climatol., 25, 521536, https://doi.org/10.1002/joc.1140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., Y. Chen, and X. Shi, 2012: Why does the temperature rise faster in the arid region of northwest China? J. Geophys. Res., 117, D16115, https://doi.org/10.1029/2012JD017953.

    • Search Google Scholar
    • Export Citation
  • Li, Q., Y. Chen, Y. Shen, X. Li, and J. Xu, 2011: Spatial and temporal trends of climate change in Xinjiang, China. J. Geogr. Sci., 21, 10071018, https://doi.org/10.1007/s11442-011-0896-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., T. Yang, M. Qi, and L. Li, 2018: Spatiotemporal variation of snowfall to precipitation ratio and its implication on water resources by a regional climate model over Xinjiang, China. Water, 10, 1043, https://doi.org/10.3390/w10101463.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Chen, Y. Li, and Y. Wang, 2020: Declining snowfall fraction in the alpine regions, Central Asia. Sci. Rep., 10, 3476, https://doi.org/10.1038/S41598-020-60303-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. Wu, R. Jia, and J. Huang, 2018: An overview of the influence of atmospheric circulation on the climate in arid and semi-arid region of Central and East Asia. Sci. China Earth Sci., 61, 11831194, https://doi.org/10.1007/s11430-017-9202-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, B., and Coauthors, 2019: Impact of El Niño and Southern Oscillation on the summer precipitation over Northwest China. Atmos. Sci. Lett., 20, e928, https://doi.org/10.1002/asl.928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. Martin Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lute, A. C., J. T. Abatzoglou, and K. C. Hegewisch, 2015: Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour. Res., 51, 960972, https://doi.org/10.1002/2014WR016267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., A. Winstral, M. Reba, J. Pomeroy, and M. Kumar, 2013: An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Adv. Water Resour., 55, 98110, https://doi.org/10.1016/j.advwatres.2012.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuo, T., Y. Sasyo, and Y. Sato, 1981: Relationship between types of precipitation on the ground and surface meteorological elements. J. Meteor. Soc. Japan, 59, 462476, https://doi.org/10.2151/jmsj1965.59.4_462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meriö, L. J., P. Ala-aho, J. Linjama, J. Hjort, B. Kløve, and H. Marttila, 2019: Snow to precipitation ratio controls catchment storage and summer flows in boreal headwater catchments. Water Resour. Res., 55, 40964109, https://doi.org/10.1029/2018WR023031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morán-Tejeda, E., J. I. López-Moreno, and M. Beniston, 2013: The changing roles of temperature and precipitation on snowpack variability in Switzerland as a function of altitude. Geophys. Res. Lett., 40, 21312136, https://doi.org/10.1002/grl.50463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., M. P. Clark, C. Liu, K. Ikeda, and R. Rasmussen, 2017: Slower snowmelt in a warmer world. Nat. Climate Change, 7, 214219, https://doi.org/10.1038/nclimate3225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayak, A., D. Marks, D. G. Chandler, and M. Seyfried, 2010: Long-term snow, climate, and streamflow trends at the Reynolds creek experimental watershed, Owyhee mountains, Idaho, United States. Water Resour. Res., 46, W06519, https://doi.org/10.1029/2008WR007525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parajka, J., and G. Blöschl, 2008: Spatio-temporal combination of MODIS images - Potential for snow cover mapping. Water Resour. Res., 44, W03406, https://doi.org/10.1029/2007WR006204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. M., S. Sobolowski, S. B. Kapnick, and J. B. Barnes, 2012: Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophys. Res. Lett., 39, L18706, https://doi.org/10.1029/2012GL052741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, D., and T. Zhou, 2017: Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos., 122, 90609075, https://doi.org/10.1002/2016JD026424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and J. D. Lundquist, 2008: Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett., 35, L1470, https://doi.org/10.1029/2008GL034026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, Y., and J. Ding, 2019. Change characteristics of different types of snowfall event in China’s Tianshan Mountains from 1961 to 2016 (in Chinese). Adv. Water Sci., 30, 457466.

    • Search Google Scholar
    • Export Citation
  • Rajagopal, S., and A. A. Harpold, 2016: Testing and improving temperature thresholds for snow and rain prediction in the western United States. J. Amer. Water Resour. Assoc., 52, 11421154, https://doi.org/10.1111/1752-1688.12443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rebetez, M., 1996: Seasonal relationship between temperature, precipitation and snow cover in a mountainous region. Theor. Appl. Climatol., 54, 99106, https://doi.org/10.1007/BF00865152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, https://doi.org/10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., H.-S. Park, A. V. Ryzhkov, and H. D. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, https://doi.org/10.1175/JAMC-D-11-091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., and Coauthors, 2003: Discussion on the present climate change from warm-dry to warm-wet in northwest China (in Chinese). Quat. Sci., 23, 152164.

    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., J. R. Melton, and W. J. Merryfield, 2015: Effects of temperature and precipitation on snowpack variability in the Central Rocky Mountains as a function of elevation. Geophys. Res. Lett., 42, 44294438, https://doi.org/10.1002/2015GL063898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, M., Z. Li, X. Yao, and S. Jin, 2013: Rapid shrinkage and hydrological response of a typical continental glacier in the arid region of northwest China - Taking Urumqi Glacier No.1 as an example. Ecohydrology, 6, 909916, https://doi.org/10.1002/eco.1272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., and R. E. Stewart, 2007: On the effects of vertical air velocity on winter precipitation types. Nat. Hazards Earth Syst. Sci., 7, 231242, https://doi.org/10.5194/nhess-7-231-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. E. Stewart, and W. Henson, 2010: On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol., 49, 14291442, https://doi.org/10.1175/2010JAMC2321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., M. Zhang, J. Crawford, C. E. Hughes, and M. Du, and X. Liu, 2017: The effect of moisture source and synoptic conditions on precipitation isotopes in arid Central Asia. J. Geophys. Res. Atmos., 122, 26672682, https://doi.org/10.1002/2015JD024626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wayand, N. E., J. Stimberis, J. P. Zagrodnik, C. F. Mass, and J. D. Lundquist, 2016: Improving simulations of precipitation phase and snowpack at a site subject to cold air intrusions: Snoqualmie Pass, WA. J. Geophys. Res. Atmos., 121, 99299942, https://doi.org/10.1002/2016JD025387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., H. Zhou, C. Liang, L. Du, and H. Li, 2010: Spatial and temporal variability of annual and seasonal precipitation over the desert region of China during 1951-2005. Hydrol. Processes, 24, 29472959, https://doi.org/10.1002/hyp.7708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., S. Kang, H. Wu, and X. Yuan, 2018: Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res., 203, 141163, https://doi.org/10.1016/j.atmosres.2017.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., J. Cohen, and M. Rawlins, 2013: Discrimination of solid from liquid precipitation over Northern Eurasia using surface atmospheric conditions. J. Hydrometeor., 14, 13451355, https://doi.org/10.1175/JHM-D-12-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., Y. Chen, Y. Shen, and B. Li, 2019: Tracking climate change in Central Asia through temperature and precipitation extremes. J. Geogr. Sci., 29, 328, https://doi.org/10.1007/s11442-019-1581-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., M. Wang, A. Huang, H. Li, W. Huo, and Q. Yang, 2013: Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang. Theor. Appl. Climatol., 116, 403411, https://doi.org/10.1007/s00704-013-0948-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., A. Huang, Y. Zhao, Q. Yang, J. Jiang, and M. La, 2014: Influence of the sea surface temperature anomaly over the Indian Ocean in March on the summer rainfall in Xinjiang. Theor. Appl. Climatol., 119, 781789, https://doi.org/10.1007/s00704-014-1149-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., T. Wu, R. Li, S. Wang, G. Hu, W. Wang, Y. Qin, and S. Yang, 2017: Characteristics of the ratios of snow, rain and sleet to precipitation on the Qinghai-Tibet Plateau during 1961–2014. Quat. Int., 444, 137150, https://doi.org/10.1016/j.quaint.2016.07.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 84 84 44
Full Text Views 14 14 8
PDF Downloads 24 24 15

Evaluation of Phase Discrimination Methods and Snow Fraction Perturbations in Arid Regions of Northwest China

View More View Less
  • 1 School of Geography and Planning, Sun Yat-Sen University, Guangzhou, China
  • 2 College of Resource and Environmental Sciences, Xinjiang University, Urumqi, China
© Get Permissions
Restricted access

Abstract

Snow fraction has a direct impact on water resources in arid regions. The selection of proper methods for estimating snow fraction is thus essential. Two temperature-based and two humidity-based approaches to discriminate precipitation phase were evaluated using daily meteorological observations over the past six decades in Xinjiang in arid northwest China. The main findings included that 1) the finest discrimination was achieved by the wet-bulb temperature (Tw) method whereas the single temperature threshold at 0°C produces the poorest result; the performances of the Dai and humidity-dependent empirical method (TRH) methods were between them, with slightly lower error using the Dai method. Also, the Tw method is the least sensitive to regional heterogeneity and less affected by distinct changes in elevation; the other three methods, however, are biased mostly toward underestimating snow and show larger variations due to the regional discrepancies. Careful adjustment of snow discrimination thresholds based on the local properties of observation spots is needed for these methods. 2) Despite widespread warming, snow fraction perturbations in Xinjiang are characterized mainly by insignificant changes plus pronounced reductions at high mountain sites. Proxy drivers of such changes can be better explained by considering the hydrothermal diversity and changing climatic factors. Across the wetter subregions, snowfall has been significantly increasing, and the positive impact of which on snow fraction was hindered by significant warming, particularly in winter, and summer rainfall; across the drier subregions, however, insignificant change in snow fraction corresponds to a slow and insignificant increase in snowfall joined by the negative impacts of significant winter warming and summer rainfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guoping Tang, tanggp3@mail.sysu.edu.cn

Abstract

Snow fraction has a direct impact on water resources in arid regions. The selection of proper methods for estimating snow fraction is thus essential. Two temperature-based and two humidity-based approaches to discriminate precipitation phase were evaluated using daily meteorological observations over the past six decades in Xinjiang in arid northwest China. The main findings included that 1) the finest discrimination was achieved by the wet-bulb temperature (Tw) method whereas the single temperature threshold at 0°C produces the poorest result; the performances of the Dai and humidity-dependent empirical method (TRH) methods were between them, with slightly lower error using the Dai method. Also, the Tw method is the least sensitive to regional heterogeneity and less affected by distinct changes in elevation; the other three methods, however, are biased mostly toward underestimating snow and show larger variations due to the regional discrepancies. Careful adjustment of snow discrimination thresholds based on the local properties of observation spots is needed for these methods. 2) Despite widespread warming, snow fraction perturbations in Xinjiang are characterized mainly by insignificant changes plus pronounced reductions at high mountain sites. Proxy drivers of such changes can be better explained by considering the hydrothermal diversity and changing climatic factors. Across the wetter subregions, snowfall has been significantly increasing, and the positive impact of which on snow fraction was hindered by significant warming, particularly in winter, and summer rainfall; across the drier subregions, however, insignificant change in snow fraction corresponds to a slow and insignificant increase in snowfall joined by the negative impacts of significant winter warming and summer rainfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guoping Tang, tanggp3@mail.sysu.edu.cn
Save