• Aslami, F., A. Ghorbani, B. Sobhani, and A. Esmali, 2019: Comprehensive comparison of daily IMERG and GSMaP satellite precipitation products in Ardabil province, Iran. Int. J. Remote Sens., 40, 31393153, https://doi.org/10.1080/01431161.2018.1539274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. L., A. Abdullah, R. L. Martin, and G. R. North, 1990: Sampling errors for satellite-derived tropical rainfall: Monte Carlo study using a space-time stochastic model. J. Geophys. Res., 95, 21952205, https://doi.org/10.1029/JD095iD03p02195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derin, Y., and Coauthors, 2016: Multiregional satellite precipitation products evaluation over complex terrain. J. Hydrometeor., 17, 18171836, https://doi.org/10.1175/JHM-D-15-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., W. F. Krajewski, M. Morrissey, D. Langerud, G. J. Huffman, and R. Adler, 2003: Error uncertainty analysis of GPCP monthly rainfall products: A data-based simulation study. J. Appl. Meteor., 42, 18371848, https://doi.org/10.1175/1520-0450(2003)042<1837:EUAOGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., L. Yang, F. Tian, G. Ni, A. Hou, and H. Lu, 2017: Intercomparisons of rainfall estimates from TRMM and GPM multisatellite products over the Upper Mekong River Basin. J. Hydrometeor., 18, 413430, https://doi.org/10.1175/JHM-D-16-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosseini-Moghari, S.-M., and Q. Tang, 2020: Validation of GPM IMERG V05 and V06 precipitation products over Iran. J. Hydrometeor., 21, 10111037, https://doi.org/10.1175/JHM-D-19-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huff, F., 1970: Sampling errors in measurement of mean precipitation. J. Appl. Meteor., 9, 3544, https://doi.org/10.1175/1520-0450(1970)009<0035:SEIMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G., D. Bolvin, E. Nelkin, E. Stocker, and J. Tan, 2020a: V06 IMERG release notes. NASA Tech. Doc., 15 pp., https://gpm.nasa.gov/sites/default/files/2020-10/IMERG_V06_release_notes_201006_0.pdf.

  • Huffman, G., and Coauthors, 2020b: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 06, 39 pp., https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf.

  • Huffman, G., D. Bolvin, E. Nelkin, and J. Tan, 2020c: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. IMERG Tech. Doc., 83 pp., https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERG_doc.06.pdf.

  • Hur, J., S. V. Raghavan, N. S. Nguyen, and S.-Y. Liong, 2016: Evaluation of high-resolution satellite rainfall data over Singapore. Procedia Eng., 154, 158167, https://doi.org/10.1016/j.proeng.2016.07.437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. J. Ciach, J. R. McCollum, and C. Bacotiu, 2000: Initial validation of the Global Precipitation Climatology Project monthly rainfall over the United States. J. Appl. Meteor., 39, 10711086, https://doi.org/10.1175/1520-0450(2000)039<1071:IVOTGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., 1998: Beamfilling errors in passive microwave rainfall retrievals. J. Appl. Meteor., 37, 356370, https://doi.org/10.1175/1520-0450(1998)037<0356:BEIPMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libertino, A., A. Sharma, V. Lakshmi, and P. Claps, 2016: A global assessment of the timing of extreme rainfall from TRMM and GPM for improving hydrologic design. Environ. Res. Lett., 11, 054003, https://doi.org/10.1088/1748-9326/11/5/054003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, J. C.-F., and T. Orton, 2016: The general features of tropical Sumatra squalls. Weather, 71, 175178, https://doi.org/10.1002/wea.2748.

  • Ma, Y., G. Tang, D. Long, B. Yong, L. Zhong, W. Wan, and Y. Hong, 2016: Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens., 8, 569, https://doi.org/10.3390/rs8070569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., P. C. Meyers, and M. D. Robinson, 2016: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeor., 17, 11011117, https://doi.org/10.1175/JHM-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandapaka, P. V., and X. Qin, 2013: Analysis and characterization of probability distribution and small-scale spatial variability of rainfall in Singapore using a dense gauge network. J. Appl. Meteor. Climatol., 52, 27812796, https://doi.org/10.1175/JAMC-D-13-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandapaka, P. V., W. F. Krajewski, G. J. Ciach, G. Villarini, and J. A. Smith, 2009: Estimation of radar-rainfall error spatial correlation. Adv. Water Resour., 32, 10201030, https://doi.org/10.1016/j.advwatres.2008.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manz, B., S. Páez-Bimos, N. Horna, W. Buytaert, B. Ochoa-Tocachi, W. Lavado-Casimiro, and B. Willems, 2017: Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes. J. Hydrometeor., 18, 24692489, https://doi.org/10.1175/JHM-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., J. A. Maliekal, J. S. Greene, and J. Wang, 1995: The uncertainty of simple spatial averages using rain gauge networks. Water Resour. Res., 31, 20112017, https://doi.org/10.1029/95WR01232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, S., and U. Foelsche, 2019: Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network. Hydrol. Earth Syst. Sci., 23, 28632875, https://doi.org/10.5194/hess-23-2863-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O., S., U. Foelsche, G. Kirchengast, J. Fuchsberger, J. Tan, and W. A. Petersen, 2017: Evaluation of GPM IMERG early, late, and final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci., 21, 65596572, https://doi.org/10.5194/hess-21-6559-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panziera, L., U. Germann, M. Gabella, and P. Mandapaka, 2011: NORA–nowcasting of orographic rainfall by means of analogues. Quart. J. Roy. Meteor. Soc., 137, 21062123, https://doi.org/10.1002/qj.878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peleg, N., M. Ben-Asher, and E. Morin, 2013: Radar subpixel-scale rainfall variability and uncertainty: Lessons learned from observations of a dense rain-gauge network. Hydrol. Earth Syst. Sci., 17, 21952208, https://doi.org/10.5194/hess-17-2195-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petković, V., and C. D. Kummerow, 2017: Understanding the sources of satellite passive microwave rainfall retrieval systematic errors over land. J. Appl. Meteor. Climatol., 56, 597614, https://doi.org/10.1175/JAMC-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., A. K. Mitra, D. Pai, and A. AghaKouchak, 2016: From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour., 88, 17, https://doi.org/10.1016/j.advwatres.2015.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., and J. M. Mejía, 1974: The design of rainfall networks in time and space. Water Resour. Res., 10, 713728, https://doi.org/10.1029/WR010i004p00713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahlu, D., E. I. Nikolopoulos, S. A. Moges, E. N. Anagnostou, and D. Hailu, 2016: First evaluation of the day-1 IMERG over the upper Blue Nile basin. J. Hydrometeor., 17, 28752882, https://doi.org/10.1175/JHM-D-15-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and Z. Duan, 2017: Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens., 9, 720, https://doi.org/10.3390/rs9070720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., and H. Santo, 2018: Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res., 202, 6376, https://doi.org/10.1016/j.atmosres.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., A. Behrangi, D. Long, C. Li, and Y. Hong, 2018: Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol., 559, 294306, https://doi.org/10.1016/j.jhydrol.2018.02.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F., S. Hou, L. Yang, H. Hu, and A. Hou, 2018: How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity? J. Hydrometeor., 19, 339349, https://doi.org/10.1175/JHM-D-17-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, https://doi.org/10.1029/2010GL046008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113, D11102, https://doi.org/10.1029/2007JD009214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., H. Lu, T. Zhao, L. Jiang, and J. Shi, 2017: Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 25402549, https://doi.org/10.1109/JSTARS.2017.2672786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Y. Xu, and S. Wang, 2018: Comparison of TMPA-3B42RT legacy product and the equivalent IMERG products over Mainland China. Remote Sens., 10, 1778, https://doi.org/10.3390/rs10111778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, R., F. Tian, L. Yang, H. Hu, H. Lu, and A. Hou, 2017: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos., 122, 910924, https://doi.org/10.1002/2016JD025418.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 145 145 38
Full Text Views 25 25 7
PDF Downloads 29 29 7

Evaluation of GPM IMERG Rainfall Estimates in Singapore and Assessing Spatial Sampling Errors in Ground Reference

View More View Less
  • 1 Institute of Catastrophe Risk Management, Nanyang Technological University, Singapore, Singapore
  • 2 School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
© Get Permissions
Restricted access

Abstract

We evaluated the Integrated Multisatellite Retrievals for GPM (IMERG) V06B Early and Final Run products using data from a dense gauge network in Singapore as ground reference (GR). The evaluation is carried out at monthly, daily, and hourly scales, and conditioned on different seasons and rainfall intensities. Further, different spatial configurations and densities of the gauge networks (3–17 gauges per IMERG cell) used here allowed us to examine spatial sampling errors (SSE) in the GR. The results revealed a probability of detection of 0.95 (0.65), critical success index of 0.69 (0.35), and a correlation of 0.60 (0.41) for the daily (hourly) scale. Results also indicate an overestimation of rainy days (hours) by IMERG compared to GR, leading to a false alarm ratio of 0.29 (0.57) at daily (hourly) scales. Analysis of probability distributions and conditional error metrics showed overestimation of lighter (0.2–4 mm day−1) and moderate (4–8 mm day−1) rainfall by IMERG, but better performance for heavier rainfall (≥32 mm day−1). The seasonal analysis showed improved performance of IMERG during November–February compared to June–September months. The hourly analysis further revealed large discrepancies in diurnal cycles during June–September. The SSE are studied in a Monte Carlo framework consisting of several synthetic networks with varying spatial configurations and densities. The effect of SSE on IMERG evaluation results is characterized following the error variance separation approach. For the gauge networks studied here, the contribution of SSE variance to IMERG daily error variance ranges from 4% to 24% depending on gauge spatial configuration, and is as large as 36% during intermonsoon months when rainfall is highly convective in nature.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0135.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pradeep V. Mandapaka, pradeepmv@ntu.edu.sg

Abstract

We evaluated the Integrated Multisatellite Retrievals for GPM (IMERG) V06B Early and Final Run products using data from a dense gauge network in Singapore as ground reference (GR). The evaluation is carried out at monthly, daily, and hourly scales, and conditioned on different seasons and rainfall intensities. Further, different spatial configurations and densities of the gauge networks (3–17 gauges per IMERG cell) used here allowed us to examine spatial sampling errors (SSE) in the GR. The results revealed a probability of detection of 0.95 (0.65), critical success index of 0.69 (0.35), and a correlation of 0.60 (0.41) for the daily (hourly) scale. Results also indicate an overestimation of rainy days (hours) by IMERG compared to GR, leading to a false alarm ratio of 0.29 (0.57) at daily (hourly) scales. Analysis of probability distributions and conditional error metrics showed overestimation of lighter (0.2–4 mm day−1) and moderate (4–8 mm day−1) rainfall by IMERG, but better performance for heavier rainfall (≥32 mm day−1). The seasonal analysis showed improved performance of IMERG during November–February compared to June–September months. The hourly analysis further revealed large discrepancies in diurnal cycles during June–September. The SSE are studied in a Monte Carlo framework consisting of several synthetic networks with varying spatial configurations and densities. The effect of SSE on IMERG evaluation results is characterized following the error variance separation approach. For the gauge networks studied here, the contribution of SSE variance to IMERG daily error variance ranges from 4% to 24% depending on gauge spatial configuration, and is as large as 36% during intermonsoon months when rainfall is highly convective in nature.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0135.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pradeep V. Mandapaka, pradeepmv@ntu.edu.sg

Supplementary Materials

    • Supplemental Materials (PDF 476 KB)
Save