Horizontal Advection Schemes of a Staggered Grid—An Enstrophy and Energy-Conserving Model

Fedor Mesinger Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ 08540

Search for other papers by Fedor Mesinger in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

For use in a model on the semi-staggered E (in the Arakawa notation) grid, a number of conserving schemes for the horizontal advection are developed and analyzed. For the rotation terms of the momentum advection, the second-order enstrophy and energy-conserving scheme of Janjić (1977) is generalized to conserve energy in case of divergent flow. A family of analogs of the Arakawa (1966) fourth-order scheme is obtained following a transformation of its component Jacobians. For the kinetic energy advection terms, a fourth- (or approximately fourth) order scheme is developed which maintains the total kinetic energy and, in addition, makes no contribution to the change in the finite-difference vorticity. For the resulting both second- and fourth-order momentum advection scheme, a modification is pointed out which avoids the non-cancellation of terms considered recently by Hollingsworth and Källberg (1979), and shown to lead to a linear instability of a zonally uniform inertia-gravity wave. Finally, a second- order as well as a fourth-order (or approximately so) advection scheme for temperature (and moisture) advection is given, preserving the total energy (and moisture) inside the integration region.

Abstract

For use in a model on the semi-staggered E (in the Arakawa notation) grid, a number of conserving schemes for the horizontal advection are developed and analyzed. For the rotation terms of the momentum advection, the second-order enstrophy and energy-conserving scheme of Janjić (1977) is generalized to conserve energy in case of divergent flow. A family of analogs of the Arakawa (1966) fourth-order scheme is obtained following a transformation of its component Jacobians. For the kinetic energy advection terms, a fourth- (or approximately fourth) order scheme is developed which maintains the total kinetic energy and, in addition, makes no contribution to the change in the finite-difference vorticity. For the resulting both second- and fourth-order momentum advection scheme, a modification is pointed out which avoids the non-cancellation of terms considered recently by Hollingsworth and Källberg (1979), and shown to lead to a linear instability of a zonally uniform inertia-gravity wave. Finally, a second- order as well as a fourth-order (or approximately so) advection scheme for temperature (and moisture) advection is given, preserving the total energy (and moisture) inside the integration region.

Save