The Diurnal Variation of Atlantic Ocean Tropical Cyclone Cloud Distribution Inferred from Geostationary Satellite Infrared Measurements

View More View Less
  • 1 General Software Corporation, Landover, MD 20785
  • | 2 Laboratory for Atmospheric Sciences (GLAS), NASA/Goddard Space Flight Center, Greenbelt, MD 20771
  • | 3 Department of Physics and Astronomy, Clemson University, Clemson, SC 29631
© Get Permissions
Full access

Abstract

Satellite-measured equivalent blackbody temperatures of Atlantic Ocean tropical cyclones are used to describe the associated convection and cloud patterns. Average equivalent blackbody temperatures were developed from 538 geostationary satellite observations of 23 tropical cyclones. The average values were stratified into tropical storm or hurricane intensity category, then normalized to local standard time and composited to provide a 24 h diurnal time series. The composited values represent the mean cloud top temperature within data rings around the tropical cyclone centers.

The cloud top temperatures when compared to a mean tropical atmosphere suggest that the mean top of the dense cloud canopy of hurricanes is near 10.6 km and extends horizontally to 321 km radius from the center. The mean top of the dense canopy of tropical storms is near 9.7 km and extends horizontally to 278 km from the center. The mean top of the deep convection near the center of hurricanes is near 13 km and in tropical storms is near 12 km. A Fourier series analysis of the 24 h time series shows diurnal and semidiurnal cloud patterns which are statistically significant at the 0.0005 and 0.01 levels, respectively. The cloud cycles are in phase with the convection and cloud activity found in tropical systems by other investigators.

Abstract

Satellite-measured equivalent blackbody temperatures of Atlantic Ocean tropical cyclones are used to describe the associated convection and cloud patterns. Average equivalent blackbody temperatures were developed from 538 geostationary satellite observations of 23 tropical cyclones. The average values were stratified into tropical storm or hurricane intensity category, then normalized to local standard time and composited to provide a 24 h diurnal time series. The composited values represent the mean cloud top temperature within data rings around the tropical cyclone centers.

The cloud top temperatures when compared to a mean tropical atmosphere suggest that the mean top of the dense cloud canopy of hurricanes is near 10.6 km and extends horizontally to 321 km radius from the center. The mean top of the dense canopy of tropical storms is near 9.7 km and extends horizontally to 278 km from the center. The mean top of the deep convection near the center of hurricanes is near 13 km and in tropical storms is near 12 km. A Fourier series analysis of the 24 h time series shows diurnal and semidiurnal cloud patterns which are statistically significant at the 0.0005 and 0.01 levels, respectively. The cloud cycles are in phase with the convection and cloud activity found in tropical systems by other investigators.

Save