Spatial Patterns of Convection in South Florida

David O. Blanchard NOAA/ERL/Weather Research Program, Boulder, CO 80303

Search for other papers by David O. Blanchard in
Current site
Google Scholar
PubMed
Close
and
Raül E. López NOAA/ERL/Weather Research Program, Boulder, CO 80303

Search for other papers by Raül E. López in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Although they are a fairly consistent feature, the sea-breeze and lake-breeze convergence lines and the associated convection over south Florida during the summer may vary considerably from one day to the next. Daily radar maps indicate a few basic recurring patterns. Analyses of radiosonde data show significant differences corresponding to the different patterns in the local thermodynamic parameters, most notably the mixing ratio. Changes in the synoptic-scale wind field correspond closely to changes in the observed radar patterns and the local thermodynamic conditions. Explanation of the formation and development of the different patterns of convection is given in terms of the complex interaction between the regional-, synoptic-, peninsular- and local-scale circulations.

Abstract

Although they are a fairly consistent feature, the sea-breeze and lake-breeze convergence lines and the associated convection over south Florida during the summer may vary considerably from one day to the next. Daily radar maps indicate a few basic recurring patterns. Analyses of radiosonde data show significant differences corresponding to the different patterns in the local thermodynamic parameters, most notably the mixing ratio. Changes in the synoptic-scale wind field correspond closely to changes in the observed radar patterns and the local thermodynamic conditions. Explanation of the formation and development of the different patterns of convection is given in terms of the complex interaction between the regional-, synoptic-, peninsular- and local-scale circulations.

Save