Numerical Simulations of the Atmospheric Response to a Sea Surface Temperature Anomaly over the Equatorial Eastern Pacific Ocean

Carlos R. Mechoso Department of Atmospheric Science, University of California, Los Angeles, CA 90024

Search for other papers by Carlos R. Mechoso in
Current site
Google Scholar
PubMed
Close
,
Akio Kitoh Department of Atmospheric Science, University of California, Los Angeles, CA 90024

Search for other papers by Akio Kitoh in
Current site
Google Scholar
PubMed
Close
,
Shrinivas Moorthi Department of Atmospheric Science, University of California, Los Angeles, CA 90024

Search for other papers by Shrinivas Moorthi in
Current site
Google Scholar
PubMed
Close
, and
Akio Arakawa Department of Atmospheric Science, University of California, Los Angeles, CA 90024

Search for other papers by Akio Arakawa in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The atmospheric response to a sea surface temperature anomaly over the equatorial eastern Pacific Ocean (SSTA) is investigated using the UCLA General Circulation Model. The SSTA used is an idealization of that compiled by Rasmusson and Carpenter for the mature phase of El Niño. Two simulations over seasons, one without and the other with the SSTA, are performed and their results are compared for the Northern Hemisphere winter season.

In the tropics the SSTA enhances precipitation over the central and eastern equatorial Pacific, while it decreases precipitation over the adjacent regions. The anomalous precipitation is predominantly balanced by the anomalous moisture flux convergence, which has comparable magnitude in the planetary boundary layer (PBL), and in the free atmosphere with quite different geographical distribution. This suggests that the anomalous precipitation, and hence the anomalous tropical cumulus heating, cannot be related exclusively to either flow anomalies in the PBL or in the free atmosphere.

In the midlatitudes, it is found that the SSTA results in a more zonal flow over the Pacific with an intensification of the upper-tropospheric westerlies. Associated with this intensification, synoptic-scale transient baroclinic waves become more active. This is consistent with interannual differences in observed spectral distributions of transients for five winters, two of which were El Niño winters. Geographically, the increase in baroclinic wave activity occurs in a zonal bell extending from the northeastern Pacific to the northern Atlantic.

Abstract

The atmospheric response to a sea surface temperature anomaly over the equatorial eastern Pacific Ocean (SSTA) is investigated using the UCLA General Circulation Model. The SSTA used is an idealization of that compiled by Rasmusson and Carpenter for the mature phase of El Niño. Two simulations over seasons, one without and the other with the SSTA, are performed and their results are compared for the Northern Hemisphere winter season.

In the tropics the SSTA enhances precipitation over the central and eastern equatorial Pacific, while it decreases precipitation over the adjacent regions. The anomalous precipitation is predominantly balanced by the anomalous moisture flux convergence, which has comparable magnitude in the planetary boundary layer (PBL), and in the free atmosphere with quite different geographical distribution. This suggests that the anomalous precipitation, and hence the anomalous tropical cumulus heating, cannot be related exclusively to either flow anomalies in the PBL or in the free atmosphere.

In the midlatitudes, it is found that the SSTA results in a more zonal flow over the Pacific with an intensification of the upper-tropospheric westerlies. Associated with this intensification, synoptic-scale transient baroclinic waves become more active. This is consistent with interannual differences in observed spectral distributions of transients for five winters, two of which were El Niño winters. Geographically, the increase in baroclinic wave activity occurs in a zonal bell extending from the northeastern Pacific to the northern Atlantic.

Save