A Case Study of the Summertime Great Plains Low Level Jet

View More View Less
  • 1 Umversity of Wyoming, Department of Atmospheric Science, Laramie, Wyoming
© Get Permissions
Full access

Abstract

A case study of the kinematical and dynamical evolution of the summertime Great Plains low level jet (LLJ) is presented. Airborne radar altimetry was used to discern the x and y components of the geostrophic wind at three levels in the lower atmosphere throughout the LLJ episode. Results appear to confirm previous theoretical and numerical studies regarding the importance of the diurnal cycle of heating over sloping terrain in producing an oscillating horizontal pressure gradient force. Inertial turning of the LLJ as a result of frictional decoupling was also documented. It is concluded that the inertial oscillation resulting from the sudden decrease in friction in the lower atmosphere during the early evening is the dominant mechanism in forcing this example of a summertime Great Plains LLJ.

Abstract

A case study of the kinematical and dynamical evolution of the summertime Great Plains low level jet (LLJ) is presented. Airborne radar altimetry was used to discern the x and y components of the geostrophic wind at three levels in the lower atmosphere throughout the LLJ episode. Results appear to confirm previous theoretical and numerical studies regarding the importance of the diurnal cycle of heating over sloping terrain in producing an oscillating horizontal pressure gradient force. Inertial turning of the LLJ as a result of frictional decoupling was also documented. It is concluded that the inertial oscillation resulting from the sudden decrease in friction in the lower atmosphere during the early evening is the dominant mechanism in forcing this example of a summertime Great Plains LLJ.

Save