The Influence of Vertical Wind Shear on the Diameter of Cumulus Clouds in CCOPE

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Full access

Abstract

The cloud-base diameters of 40 cumulus clouds traversed by aircraft on 14 days of the Cooperative Convective Precipitation Experiment (CCOPE) are shown to increase with the vertical shear of the horizontal wind through cloud base. The relationship is stronger when only the largest clouds sampled in each of the 16 populations are considered. The relationship is strongest when the cloud diameter is normalized by the maximum achievable cloud height, as estimated by the parcel equilibrium height. Assuming a cloud diameter—height ratio of around 1, this implies that larger shear enables clouds to reach a larger fraction of their maximum possible size given the thermodynamic conditions. Alternatively, larger shear may lead to clouds with larger diameter-height ratios. The correct interpretation is probably a combination of the two.

The physical mechanisms for the growth of these largest clouds seem to involve interaction among clouds and the interaction of the clouds with cloud—and boundary layer—induced tropospheric gravity waves, as discussed by Clerk et al. (1986), since these interactions are stronger with stronger vertical shear of the horizontal wind through cloud base. Once produced, the larger clouds that produce outflows have a greater chance to enlarge or to produce new clouds in situations with stronger shear, enhancing the chance of sampling larger clouds.

Abstract

The cloud-base diameters of 40 cumulus clouds traversed by aircraft on 14 days of the Cooperative Convective Precipitation Experiment (CCOPE) are shown to increase with the vertical shear of the horizontal wind through cloud base. The relationship is stronger when only the largest clouds sampled in each of the 16 populations are considered. The relationship is strongest when the cloud diameter is normalized by the maximum achievable cloud height, as estimated by the parcel equilibrium height. Assuming a cloud diameter—height ratio of around 1, this implies that larger shear enables clouds to reach a larger fraction of their maximum possible size given the thermodynamic conditions. Alternatively, larger shear may lead to clouds with larger diameter-height ratios. The correct interpretation is probably a combination of the two.

The physical mechanisms for the growth of these largest clouds seem to involve interaction among clouds and the interaction of the clouds with cloud—and boundary layer—induced tropospheric gravity waves, as discussed by Clerk et al. (1986), since these interactions are stronger with stronger vertical shear of the horizontal wind through cloud base. Once produced, the larger clouds that produce outflows have a greater chance to enlarge or to produce new clouds in situations with stronger shear, enhancing the chance of sampling larger clouds.

Save