The 27–28 October 1986 FIRE IFO Cirrus Case Study: In Situ Observations of Radiation and Dynamic Properties of a Cirrus Cloud Layer

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Full access

Abstract

On 28 October 1986 the NCAR Sabreliner observed a cirrus cloud layer in the vicinity of Green Bay, Wisconsin. A portion of each flight leg was conducted over western Lake Michigan and over the adjacent western shore. The cirrus layer would be qualitatively described as optically thin and tenuous, yet broadband infrared effective emittances were found between about 0.4 and 0.6 while broadband shortwave extinction values ranged from as low as 5% to 32%. This investigation examines the bulk radiative properties of the cirrus layer and the horizontal variability of these radiative properties. In addition, the microphysical characteristics and the dynamic properties of the layer are presented and analyzed. The broadband infrared volume absorption coefficients were deduced for the cirrus layer and found to be very similar in terms of a dependence on temperature to results recently presented by other authors. Infrared radiative heating rates were calculated and found to be typical of the optically thin cirrus layer examined here. The horizontal structures of the radiative properties of the cirrus cloud layer and the vertical velocity observations were very similar. Both showed a smaller scale variation at the top of the cirrus layer which merged into larger scale common elements near the bases of the layer. Power spectra analyses of along-wind and cross-wind components near the base of the clouds sampled exhibited a steep spectral slope of k−3 at the smaller wave numbers (scalelengths greater than 1 km). This k−3 slope is characteristic of two-dimensional eddies. The same k−3 slope is present in the power spectra of the radiative properties. It is probable that these radiative properties, which are modulated by the cloud elements, have their scales determined by the eddies detected in the analysis of wind components.

Abstract

On 28 October 1986 the NCAR Sabreliner observed a cirrus cloud layer in the vicinity of Green Bay, Wisconsin. A portion of each flight leg was conducted over western Lake Michigan and over the adjacent western shore. The cirrus layer would be qualitatively described as optically thin and tenuous, yet broadband infrared effective emittances were found between about 0.4 and 0.6 while broadband shortwave extinction values ranged from as low as 5% to 32%. This investigation examines the bulk radiative properties of the cirrus layer and the horizontal variability of these radiative properties. In addition, the microphysical characteristics and the dynamic properties of the layer are presented and analyzed. The broadband infrared volume absorption coefficients were deduced for the cirrus layer and found to be very similar in terms of a dependence on temperature to results recently presented by other authors. Infrared radiative heating rates were calculated and found to be typical of the optically thin cirrus layer examined here. The horizontal structures of the radiative properties of the cirrus cloud layer and the vertical velocity observations were very similar. Both showed a smaller scale variation at the top of the cirrus layer which merged into larger scale common elements near the bases of the layer. Power spectra analyses of along-wind and cross-wind components near the base of the clouds sampled exhibited a steep spectral slope of k−3 at the smaller wave numbers (scalelengths greater than 1 km). This k−3 slope is characteristic of two-dimensional eddies. The same k−3 slope is present in the power spectra of the radiative properties. It is probable that these radiative properties, which are modulated by the cloud elements, have their scales determined by the eddies detected in the analysis of wind components.

Save