Diabatic Modification of an Extratropical Marine Cyclone Warm Sector by Cold Underlying Water

View More View Less
  • 1 NOAA/ERL/Wave Propagation Laboratory, Boulder, Colorado
  • | 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA, Boulder, Colorado
  • | 3 Drexel University, Philadelphia, Pennsylvania
© Get Permissions
Full access

Abstract

On 25–27 January 1988, the National Oceanic and Atmospheric Administration's Wave Propagation Laboratory, Drexel University, and the Office of Naval Research carried out a combined pre-ERICA research aircraft investigation of a major marine cyclone moving northeastward over the Canadian Maritime Provinces. Flight-level and dropwindsonde observations documented the diabatic modification of the cyclone's warm sector marine boundary layer (MBL) as it moved out over cold underlying water. These observations and results from the Blackadar one-dimensional boundary layer model both show that heat fluxes were directed downward from the warm sector MBL into the cold ocean. Vertical gradients of these downward heat fluxes diabatically cooled the lower portion of the warm sector MBL and generated large static stability within the entire layer. The increase in stable stratification allowed large vertical wind shear to exist within this layer and strong wind speeds to exist at its top. The increase in static stability within the warm sector MBL acted to concentrate isentropic potential vorticity in this layer, but these changes also weakened the horizontal gradients of temperature, moisture, and wind velocity within the adjacent warm- and cold-frontal zones at the surface.

Abstract

On 25–27 January 1988, the National Oceanic and Atmospheric Administration's Wave Propagation Laboratory, Drexel University, and the Office of Naval Research carried out a combined pre-ERICA research aircraft investigation of a major marine cyclone moving northeastward over the Canadian Maritime Provinces. Flight-level and dropwindsonde observations documented the diabatic modification of the cyclone's warm sector marine boundary layer (MBL) as it moved out over cold underlying water. These observations and results from the Blackadar one-dimensional boundary layer model both show that heat fluxes were directed downward from the warm sector MBL into the cold ocean. Vertical gradients of these downward heat fluxes diabatically cooled the lower portion of the warm sector MBL and generated large static stability within the entire layer. The increase in stable stratification allowed large vertical wind shear to exist within this layer and strong wind speeds to exist at its top. The increase in static stability within the warm sector MBL acted to concentrate isentropic potential vorticity in this layer, but these changes also weakened the horizontal gradients of temperature, moisture, and wind velocity within the adjacent warm- and cold-frontal zones at the surface.

Save