The Third-Order Adams-Bashforth Method: An Attractive Alternative to Leapfrog Time Differencing

Dale R. Durran Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dale R. Durran in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

The third-order Adams–Bashforth method is compared with the leapfrog scheme. Like the leapfrog scheme, the third-order Adams–Bashforth method is an explicit technique that requires just one function evaluation per time step. Yet the third-order Adams–Bashforth method is not subject to time splitting instability and it is more accurate than the leapfrog scheme. In particular, the O[(Δt)4] amplitude error of the third-order Adams–Bashforth method can be a marked improvement over the O[(Δt)2] amplitude error generated by the Asselin-filtered leapfrog scheme—even when the filter factor is very small. The O[(Δt)4] phase-speed errors associated with third-order Adams–Bashforth time differencing can also be significantly less than the O[(Δt)2] errors produced by the leapfrog method. The third-order Adams–Bashforth method does use more storage than the leapfrog method, but its storage requirements are not particularly burdensome. Several numerical examples are provided illustrating the superiority of third-order Adams–Bashforth time differencing. Other higher-order alternatives to the Adams–Bashforth method are also surveyed. A discussion is presented describing the general relationship between the truncation error of an ordinary differential solver and the amplitude and phase-speed errors that develop when the scheme is used to integrate oscillatory systems.

Abstract

The third-order Adams–Bashforth method is compared with the leapfrog scheme. Like the leapfrog scheme, the third-order Adams–Bashforth method is an explicit technique that requires just one function evaluation per time step. Yet the third-order Adams–Bashforth method is not subject to time splitting instability and it is more accurate than the leapfrog scheme. In particular, the O[(Δt)4] amplitude error of the third-order Adams–Bashforth method can be a marked improvement over the O[(Δt)2] amplitude error generated by the Asselin-filtered leapfrog scheme—even when the filter factor is very small. The O[(Δt)4] phase-speed errors associated with third-order Adams–Bashforth time differencing can also be significantly less than the O[(Δt)2] errors produced by the leapfrog method. The third-order Adams–Bashforth method does use more storage than the leapfrog method, but its storage requirements are not particularly burdensome. Several numerical examples are provided illustrating the superiority of third-order Adams–Bashforth time differencing. Other higher-order alternatives to the Adams–Bashforth method are also surveyed. A discussion is presented describing the general relationship between the truncation error of an ordinary differential solver and the amplitude and phase-speed errors that develop when the scheme is used to integrate oscillatory systems.

Save