Three-Dimensional Mean and Turbulence Structure of a Coastal Front Influenced by the Gulf Stream

Teddy R. Holt Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Teddy R. Holt in
Current site
Google Scholar
PubMed
Close
and
Sethu Raman Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Sethu Raman in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

The interaction of oceanic fronts in the vicinity of the Gulf Stream with an atmospheric coastal front during the Genesis of Atlantic Lows Experiment (GALE) is examined using aircraft, satellite, and ship data. The nearshore, midshelf, and Gulf Stream oceanic fronts are readily discernible from low-level aircraft radiometer and satellite imagery data. The three-dimensional (3D) structure of the coastal front is extensively mapped by low-level aircraft transects through the frontal boundary.

Results confirm the existence of the coastal front as a very shallow (depth less than 200 m), spatially inhomogeneous, undulating material surface. Aircraft observations from 2000 to 2200 UTC (late afternoon local time) show a surface location of the coastal front that is aligned over the Gulf Stream oceanic front under conditions of very weak (2 m s−1) onshore flow, but is observed to migrate shoreward for stronger on-shore flow.

Ahead of the front in the warm air, the marine atmospheric boundary layer is characterized as well mixed with broken cumulus and stratocumulus cloud bases observed near 500 m, and tops varying from 1300 to 1900 m. The dominant scale of turbulent eddies is observed to be on the order of the boundary-layer depth. Conditional sampling statistics point to a strong direct circulation ahead of the front dominated by intense, narrow, warm updrafts, and broader, less intense, cool downdrafts.

Behind the coastal front in the cold air, visibility is much reduced by low-level fractus and layered stratocumulus clouds. The shallow subcloud layer is observed to be generally moister and more statically stable than ahead of the front. It is also characterized by an indirect circulation with more prevalent cool updrafts and warm downdrafts, particularly for the near–cloud-base region.

However, behind the front there exists a strong thermodynamic coupling of atmosphere and ocean as evidenced by the distinctly different atmospheric regimes present over the oceanic nearshore and midshelf front regions. Over the nearshore region, the horizontal wind structure is dominated by 100-m waves imbedded in a weaker 1–2-km circulation. Warm updrafts are observed over the nearshore waters, but the smaller air-sea temperature difference effectively limits large temperature perturbations. Hence, much smaller sensible heat flux is evident over the nearshore region as compared to the oceanic midshelf region. Over the midshelf region, turbulent eddies on the scale of 1.5 times the depth of the front (120 m) are solely responsible for the larger positive beat flux. The transition zone of the coastal front aloft near 150 m is remarkably confined to just the oceanic nearshore shelf, located between the nearshore waters and the midshelf region.

The frontal surface itself is observed to play an important role in the 3D atmospheric circulation in the vicinity of the front. The front causes a decoupling of the region just above the frontal surface by inhibiting the vertical transfer of fluxes from the surface. Cospectra for regions just above the front show no contributions from smaller waves generated by near-surface processes (on the order of 100–500 m) that are evident just ahead of the front. This suggests a decoupling due to the frontal boundary. Associated with this decoupling and the subsequent stabilization of the region above the front is the occurrence of buoyancy waves. These waves of wavelength approximately 840 m are believed to be a result of penetrating thermals and/or instabilities present along the frontal surface.

Abstract

The interaction of oceanic fronts in the vicinity of the Gulf Stream with an atmospheric coastal front during the Genesis of Atlantic Lows Experiment (GALE) is examined using aircraft, satellite, and ship data. The nearshore, midshelf, and Gulf Stream oceanic fronts are readily discernible from low-level aircraft radiometer and satellite imagery data. The three-dimensional (3D) structure of the coastal front is extensively mapped by low-level aircraft transects through the frontal boundary.

Results confirm the existence of the coastal front as a very shallow (depth less than 200 m), spatially inhomogeneous, undulating material surface. Aircraft observations from 2000 to 2200 UTC (late afternoon local time) show a surface location of the coastal front that is aligned over the Gulf Stream oceanic front under conditions of very weak (2 m s−1) onshore flow, but is observed to migrate shoreward for stronger on-shore flow.

Ahead of the front in the warm air, the marine atmospheric boundary layer is characterized as well mixed with broken cumulus and stratocumulus cloud bases observed near 500 m, and tops varying from 1300 to 1900 m. The dominant scale of turbulent eddies is observed to be on the order of the boundary-layer depth. Conditional sampling statistics point to a strong direct circulation ahead of the front dominated by intense, narrow, warm updrafts, and broader, less intense, cool downdrafts.

Behind the coastal front in the cold air, visibility is much reduced by low-level fractus and layered stratocumulus clouds. The shallow subcloud layer is observed to be generally moister and more statically stable than ahead of the front. It is also characterized by an indirect circulation with more prevalent cool updrafts and warm downdrafts, particularly for the near–cloud-base region.

However, behind the front there exists a strong thermodynamic coupling of atmosphere and ocean as evidenced by the distinctly different atmospheric regimes present over the oceanic nearshore and midshelf front regions. Over the nearshore region, the horizontal wind structure is dominated by 100-m waves imbedded in a weaker 1–2-km circulation. Warm updrafts are observed over the nearshore waters, but the smaller air-sea temperature difference effectively limits large temperature perturbations. Hence, much smaller sensible heat flux is evident over the nearshore region as compared to the oceanic midshelf region. Over the midshelf region, turbulent eddies on the scale of 1.5 times the depth of the front (120 m) are solely responsible for the larger positive beat flux. The transition zone of the coastal front aloft near 150 m is remarkably confined to just the oceanic nearshore shelf, located between the nearshore waters and the midshelf region.

The frontal surface itself is observed to play an important role in the 3D atmospheric circulation in the vicinity of the front. The front causes a decoupling of the region just above the frontal surface by inhibiting the vertical transfer of fluxes from the surface. Cospectra for regions just above the front show no contributions from smaller waves generated by near-surface processes (on the order of 100–500 m) that are evident just ahead of the front. This suggests a decoupling due to the frontal boundary. Associated with this decoupling and the subsequent stabilization of the region above the front is the occurrence of buoyancy waves. These waves of wavelength approximately 840 m are believed to be a result of penetrating thermals and/or instabilities present along the frontal surface.

Save