Skill and Return of Skill in Dynamic Extended-Range Forecasts

View More View Less
  • 1 Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 2 CAC/National Meteorological Center, Washington, D.C.
© Get Permissions
Full access

Abstract

The skill of a set of extended-range dynamical forecasts made with a modern numerical forecast model is examined. A forecast is said to be skillful if it produces a high quality forecast by correctly modeling some aspects of the dynamics of the real atmosphere; high quality forecasts may also occur by chance. The dangers of making a conclusion about model skill by verifying a single long-range forecast are pointed out by examples of apparently high “skill” verifications between extended-range forecasts and observed fields from entirely different years.

To avoid these problems, the entire distribution of forecast quality for a large set of forecasts as a function of lead time is examined. A set of control forecasts that clearly have no skill is presented. The quality distribution for the extended-range forecasts is compared to the distributions of quality for the no-skill control forecast set.

The extended-range forecast quality distributions are found to be essentially indistinguishable from those for the no-skill control at leads somewhat greater than 12 days. A search for individual forecasts with a “return of skill” at extended ranges is also made. Although it is possible to find individual forecasts that have a return of quality, a comparison to the no-skill controls demonstrates that these return of skill forecasts occur only as often as is expected by chance.

Abstract

The skill of a set of extended-range dynamical forecasts made with a modern numerical forecast model is examined. A forecast is said to be skillful if it produces a high quality forecast by correctly modeling some aspects of the dynamics of the real atmosphere; high quality forecasts may also occur by chance. The dangers of making a conclusion about model skill by verifying a single long-range forecast are pointed out by examples of apparently high “skill” verifications between extended-range forecasts and observed fields from entirely different years.

To avoid these problems, the entire distribution of forecast quality for a large set of forecasts as a function of lead time is examined. A set of control forecasts that clearly have no skill is presented. The quality distribution for the extended-range forecasts is compared to the distributions of quality for the no-skill control forecast set.

The extended-range forecast quality distributions are found to be essentially indistinguishable from those for the no-skill control at leads somewhat greater than 12 days. A search for individual forecasts with a “return of skill” at extended ranges is also made. Although it is possible to find individual forecasts that have a return of quality, a comparison to the no-skill controls demonstrates that these return of skill forecasts occur only as often as is expected by chance.

Save