All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 158 96 15
PDF Downloads 112 69 5

Doppler Radar Signatures of Developing Thunderstorms and Their Potential to Indicate the Onset of Cloud-to-Ground Lightning

View More View Less
  • 1 National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Full access

Abstract

The capability of Doppler weather radars to short-term forecast the initiation of thunderstorms and the onset of cloud-to-ground (CG) lightning is examined. Doppler weather radar data from 28 thunderstorms were analyzed from August 1990 in the central Florida environment. These radar echoes were associated with CG lightning strike locations from the National Lightning Detection Network and two lightning detection systems operated by the U.S. Air Force in the vicinity of Kennedy Space Center. From a time history of these radar echoes it was found that a 10-dBZ echo, first detected near the freezing level, may be the first definitive echo of a future thunderstorm. This thunderstorm initiation signature is often accompanied by low-altitude convergence and divergence at the top of the radar echo. The observed lead times between this thunderstorm initiation signature and the first detected CG lightning strike ranged from 5 to 45 min with a median lead time of 15 min. All lightning-producing radar echoes were detected using the thunderstorm initiation signature; however, some echoes exceeded the 10-dBZ threshold and did not produce any CG lightning. The characteristics of the WSR-88D and Terminal Doppler Weather Radar systems are evaluated for their capability to detect the thunderstorm initiation signature in central Florida with sufficient temporal and spatial resolution.

Abstract

The capability of Doppler weather radars to short-term forecast the initiation of thunderstorms and the onset of cloud-to-ground (CG) lightning is examined. Doppler weather radar data from 28 thunderstorms were analyzed from August 1990 in the central Florida environment. These radar echoes were associated with CG lightning strike locations from the National Lightning Detection Network and two lightning detection systems operated by the U.S. Air Force in the vicinity of Kennedy Space Center. From a time history of these radar echoes it was found that a 10-dBZ echo, first detected near the freezing level, may be the first definitive echo of a future thunderstorm. This thunderstorm initiation signature is often accompanied by low-altitude convergence and divergence at the top of the radar echo. The observed lead times between this thunderstorm initiation signature and the first detected CG lightning strike ranged from 5 to 45 min with a median lead time of 15 min. All lightning-producing radar echoes were detected using the thunderstorm initiation signature; however, some echoes exceeded the 10-dBZ threshold and did not produce any CG lightning. The characteristics of the WSR-88D and Terminal Doppler Weather Radar systems are evaluated for their capability to detect the thunderstorm initiation signature in central Florida with sufficient temporal and spatial resolution.

Save