“Horizontal” Reduction of Pressure to Sea Level: Comparison against the NMC's Shuell Method

View More View Less
  • 1 UCAR Visitor Research Program at the U.S. National Meteorological Center, Camp Springs, Maryland
  • | 2 General Sciences Corporation, Laurel, Maryland
© Get Permissions
Full access

Abstract

It is suggested that there are two major problems with the “standard” methods of reducing pressure to sea level based on the surface temperature or the lowest-layer(s) temperature of a numerical model. The first is that using air temperatures above elevated terrain for reducing pressure to sea level is in conflict with the presumed objective of the reduction. The authors take this to be the derivation of a pressure field appropriate to sea level that to the extent possible maintains the shape of the constant-elevation isobars and reflects the changes in the horizontal of the magnitudes of horizontal pressure gradients, as these exist at the ground surface. The other problem is that evidence is emerging showing that with the increasing realism in the representation of mountains in numerical models the performance of the standard reduction methods is about to deteriorate to the point of becoming unacceptable.

Fortunately, as proposed earlier by the first author, an alternative exists that is both simple and consistent with the objective of the reduction as presumed above. It is to replace the downward extrapolation of temperature by the horizontal interpolation of (virtual) temperature where the temperatures are given at the sides of mountains.

Performance of the “horizontal” reduction method is here compared against the so-called Shuell method, which is a conventional part of the U.S. National Meteorological Center's postprocessing packages. This is done by examining the sea level pressure centers of initial conditions and forecasts, at 12-h intervals, of the National Meteorological Center's eta model, as obtained via the Shuell and horizontal reduction methods. The comparison is done for a sample of late summer initial conditions and forecasts verifying at 16 consecutive 0000 and 1200 UTC initial times. Note that the Shuell reduction method was specifically designed to improve upon a standard lapse rate reduction to sea level during the warm season.

In terms of the agreement with the analyst-assessed values, the two methods showed an overall comparable performance. The horizontal reduction method performed much better for Mexican heat lows, while the Shuell method was clearly superior in reproducing the analyzed values at high centers over the United States and Canadian highlands. The horizontal reduction method performed somewhat better in depicting the values at the centers of lows over the United States and Canadian mountainous region of the study. As its main benefit, the horizontal reduction method eliminated formidable noise and artifact problems of the Shuell reduction method without resorting to smoothing devices.

Abstract

It is suggested that there are two major problems with the “standard” methods of reducing pressure to sea level based on the surface temperature or the lowest-layer(s) temperature of a numerical model. The first is that using air temperatures above elevated terrain for reducing pressure to sea level is in conflict with the presumed objective of the reduction. The authors take this to be the derivation of a pressure field appropriate to sea level that to the extent possible maintains the shape of the constant-elevation isobars and reflects the changes in the horizontal of the magnitudes of horizontal pressure gradients, as these exist at the ground surface. The other problem is that evidence is emerging showing that with the increasing realism in the representation of mountains in numerical models the performance of the standard reduction methods is about to deteriorate to the point of becoming unacceptable.

Fortunately, as proposed earlier by the first author, an alternative exists that is both simple and consistent with the objective of the reduction as presumed above. It is to replace the downward extrapolation of temperature by the horizontal interpolation of (virtual) temperature where the temperatures are given at the sides of mountains.

Performance of the “horizontal” reduction method is here compared against the so-called Shuell method, which is a conventional part of the U.S. National Meteorological Center's postprocessing packages. This is done by examining the sea level pressure centers of initial conditions and forecasts, at 12-h intervals, of the National Meteorological Center's eta model, as obtained via the Shuell and horizontal reduction methods. The comparison is done for a sample of late summer initial conditions and forecasts verifying at 16 consecutive 0000 and 1200 UTC initial times. Note that the Shuell reduction method was specifically designed to improve upon a standard lapse rate reduction to sea level during the warm season.

In terms of the agreement with the analyst-assessed values, the two methods showed an overall comparable performance. The horizontal reduction method performed much better for Mexican heat lows, while the Shuell method was clearly superior in reproducing the analyzed values at high centers over the United States and Canadian highlands. The horizontal reduction method performed somewhat better in depicting the values at the centers of lows over the United States and Canadian mountainous region of the study. As its main benefit, the horizontal reduction method eliminated formidable noise and artifact problems of the Shuell reduction method without resorting to smoothing devices.

Save