Estimates of Surface Humidity and Latent Heat Fluxes over Oceans from SSM/I Data

Shu-Hsien Chou NASA/Goddard Space Flight Center, Laboratory for Atmospheres, Greenbelt, Maryland

Search for other papers by Shu-Hsien Chou in
Current site
Google Scholar
PubMed
Close
,
Robert M. Atlas NASA/Goddard Space Flight Center, Laboratory for Atmospheres, Greenbelt, Maryland

Search for other papers by Robert M. Atlas in
Current site
Google Scholar
PubMed
Close
,
Chung-Lin Shie Science Systems & Applications, Inc., Lanham, Maryland

Search for other papers by Chung-Lin Shie in
Current site
Google Scholar
PubMed
Close
, and
Joe Ardizzone General Sciences Corporation, Laurel, Maryland

Search for other papers by Joe Ardizzone in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Monthly averages of daily latent heat fluxes over the oceans for February and August 1988 are estimated using a stability-dependent bulk scheme. Daily fluxes are computed from daily SSM/I (Special Sensor Microwave/Imager) wind speeds and EOF-retrieved SSM/I surface humidity, National Meteorological Center sea surface temperatures, and the European Centre for Medium-Range Weather Forecasts analyzed 2-m temperatures. Daily surface specific humidity (Q) is estimated from SSM/I precipitable water of total (W) and a 500-m bottom layer (WB) using an EOF (empirical orthogonal function) method. This method has six W-based categories of EOFs (independent of geographical locations) and is developed using 23 177 FGGE IIb humidity soundings over the global oceans. For 1200 FGGE IIb humidity soundings, the accuracy of EOF-retrieved Q is 0.75 g kg−1 for the case without errors in W and WB, and increases to 1.16 g kg−1 for the case with errors in W and WB. Compared to 342 collocated radiosonde observations, the EOF-retrieved SSM/I Q has an accuracy of 1.7 g kg−1. The method improves upon the humidity retrieval of Liu and is competitive with that of Schulz et al.

The SSM/I surface humidity and latent heat fluxes of these two months agree reasonably well with those of COADS (Comprehensive Ocean–Atmosphere Data Set). Compared to the COADS, the sea–air humidity difference of SSM/I has a positive bias of approximately 1–3 g kg−1 (an overestimation of flux) over the wintertime trade wind belts and wintertime extratropical oceans. In the summertime extratropical Pacific and summertime eastern equatorial Pacific Ocean, it has a negative bias of about 1–2 g kg−1 (an underestimation of flux). The results further suggest that the two monthly flux estimates, computed from daily and monthly mean data, do not differ significantly over the oceans.

Abstract

Monthly averages of daily latent heat fluxes over the oceans for February and August 1988 are estimated using a stability-dependent bulk scheme. Daily fluxes are computed from daily SSM/I (Special Sensor Microwave/Imager) wind speeds and EOF-retrieved SSM/I surface humidity, National Meteorological Center sea surface temperatures, and the European Centre for Medium-Range Weather Forecasts analyzed 2-m temperatures. Daily surface specific humidity (Q) is estimated from SSM/I precipitable water of total (W) and a 500-m bottom layer (WB) using an EOF (empirical orthogonal function) method. This method has six W-based categories of EOFs (independent of geographical locations) and is developed using 23 177 FGGE IIb humidity soundings over the global oceans. For 1200 FGGE IIb humidity soundings, the accuracy of EOF-retrieved Q is 0.75 g kg−1 for the case without errors in W and WB, and increases to 1.16 g kg−1 for the case with errors in W and WB. Compared to 342 collocated radiosonde observations, the EOF-retrieved SSM/I Q has an accuracy of 1.7 g kg−1. The method improves upon the humidity retrieval of Liu and is competitive with that of Schulz et al.

The SSM/I surface humidity and latent heat fluxes of these two months agree reasonably well with those of COADS (Comprehensive Ocean–Atmosphere Data Set). Compared to the COADS, the sea–air humidity difference of SSM/I has a positive bias of approximately 1–3 g kg−1 (an overestimation of flux) over the wintertime trade wind belts and wintertime extratropical oceans. In the summertime extratropical Pacific and summertime eastern equatorial Pacific Ocean, it has a negative bias of about 1–2 g kg−1 (an underestimation of flux). The results further suggest that the two monthly flux estimates, computed from daily and monthly mean data, do not differ significantly over the oceans.

Save