Agusti-Panareda, A., 2008: The contribution of ex–Tropical Cyclone Gert (1999) toward the weakening of a midlatitude cyclogenesis event. Mon. Wea. Rev., 136, 2091–2111, https://doi.org/10.1175/2007MWR1637.1.
Ahmadi-Givi, F., G. Craig, and R. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295–323, https://doi.org/10.1256/qj.02.226.
Ahmadi-Givi, F., M. Nasr-Esfahany, and A. R. Mohebalhojeh, 2014: Interaction of North Atlantic baroclinic wave packets and the Mediterranean storm track. Quart. J. Roy. Meteor. Soc., 140, 754–765, https://doi.org/10.1002/qj.2171.
Aiyyer, A., 2015: Recurving western North Pacific tropical cyclones and midlatitude predictability. Geophys. Res. Lett., 42, 7799–7807, https://doi.org/10.1002/2015GL065082.
Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.
Anthes, R. A., D. P. Baumhefner, R. M. Errico, and T. W. Bettge, 1985: Prediction of mesoscale atmospheric motions. Advances in Geophysics, Vol. 28B, Academic Press, 159–202, https://doi.org/10.1016/S0065-2687(08)60188-0.
Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 3226–3247, https://doi.org/10.1175/2008MWR2249.1.
Anwender, D., S. C. Jones, M. Leutbecher, and P. A. Harr, 2010: Sensitivity experiments for ensemble forecasts of the extratropical transition of Typhoon Tokage (2004). Quart. J. Roy. Meteor. Soc., 136, 183–200, https://doi.org/10.1002/qj.527.
Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 2325–2346, https://doi.org/10.1175/MWR-D-12-00257.1.
Archambault, H. M., D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 1122–1141, https://doi.org/10.1175/MWR-D-14-00270.1.
Badger, J., and B. J. Hoskins, 2001: Simple initial value problems and mechanisms for baroclinic growth. J. Atmos. Sci., 58, 38–49, https://doi.org/10.1175/1520-0469(2001)058<0038:SIVPAM>2.0.CO;2.
Barton, Y., P. Giannakaki, H. Von Waldow, C. Chevalier, S. Pfahl, and O. Martius, 2016: Clustering of regional-scale extreme precipitation events in southern Switzerland. Mon. Wea. Rev., 144, 347–369, https://doi.org/10.1175/MWR-D-15-0205.1.
Barwell, B., and A. Lorenc, 1985: A study of the impact of aircraft wind observations on a large-scale analysis and numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 111, 103–129, https://doi.org/10.1002/qj.49711146704.
Baumgart, M., M. Riemer, V. Wirth, F. Teubler, and S. T. Lang, 2018: Potential vorticity dynamics of forecast errors: A quantitative case study. Mon. Wea. Rev., 146, 1405–1425, https://doi.org/10.1175/MWR-D-17-0196.1.
Benjamin, T. B., and J. Feir, 1967: The disintegration of wave trains on deep water part 1. Theory. J. Fluid Mech., 27, 417–430, https://doi.org/10.1017/S002211206700045X.
Berbery, E. H., and C. S. Vera, 1996: Characteristics of the Southern Hemisphere winter storm track with filtered and unfiltered data. J. Atmos. Sci., 53, 468–481, https://doi.org/10.1175/1520-0469(1996)053<0468:COTSHW>2.0.CO;2.
Bierdel, L., T. Selz, and G. Craig, 2017: Theoretical aspects of upscale error growth on the mesoscales: Idealised numerical simulations. Quart. J. Roy. Meteor. Soc., 143, 3048–3059, https://doi.org/10.1002/qj.3160.
Binder, H., M. Boettcher, H. Joos, and H. Wernli, 2016: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. J. Atmos. Sci., 73, 3997–4020, https://doi.org/10.1175/JAS-D-15-0302.1.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.
Blackmon, M. L., Y. Lee, J. M. Wallace, and H.-H. Hsu, 1984: Time variation of 500 mb height fluctuations with long, intermediate and short time scales as deduced from lag-correlation statistics. J. Atmos. Sci., 41, 981–991, https://doi.org/10.1175/1520-0469(1984)041<0981:TVOMHF>2.0.CO;2.
Bosart, L. F., 1981: The Presidents’ Day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 1542–1566, https://doi.org/10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.
Bosart, L. F., 1999: Observed cyclone life cycles. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønas, Eds., Amer. Meteor. Soc., 187–213.
Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 3268–3291, https://doi.org/10.1175/1520-0493(1995)123<3268:PTCRIA>2.0.CO;2.
Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 1865–1891, https://doi.org/10.1175/1520-0493(1996)124<1865:LSACAW>2.0.CO;2.
Bosart, L. F., B. J. Moore, J. M. Cordeira, and H. M. Archambault, 2017: Interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Mon. Wea. Rev., 145, 1245–1273, https://doi.org/10.1175/MWR-D-16-0230.1.
Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 1689–1708, https://doi.org/10.1175/1520-0469(1983)040<1689:HEPIAB>2.0.CO;2.
Branstator, G., 2002: Circumblobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 1893–1910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.
Branstator, G., 2014: Long-lived response of the midlatitude circulation and storm tracks to pulses of tropical heating. J. Climate, 27, 8809–8826, https://doi.org/10.1175/JCLI-D-14-00312.1.
Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 1513–1532, https://doi.org/10.1175/JAS-D-16-0305.1.
Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325–334, https://doi.org/10.1002/qj.49709239302.
Briggs, R. J., 1964: Electron-Stream Interaction with Plasmas. MIT Press, 187 pp.
Campa, J., and H. Wernli, 2012: A PV perspective on the vertical structure of mature midlatitude cyclones in the Northern Hemisphere. J. Atmos. Sci., 69, 725–740, https://doi.org/10.1175/JAS-D-11-050.1.
Cavallo, S. M., and G. J. Hakim, 2009: Potential vorticity diagnosis of a tropopause polar cyclone. Mon. Wea. Rev., 137, 1358–1371, https://doi.org/10.1175/2008MWR2670.1.
Chagnon, J. M., and S. L. Gray, 2015: A diabatically generated potential vorticity structure near the extratropical tropopause in three simulated extratropical cyclones. Mon. Wea. Rev., 143, 2337–2347, https://doi.org/10.1175/MWR-D-14-00092.1.
Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 1270–1282, https://doi.org/10.1002/qj.2037.
Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 2038–2053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.
Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56, 1729–1747, https://doi.org/10.1175/1520-0469(1999)056<1729:COWPIT>2.0.CO;2.
Chang, E. K. M., 2000: Wave packets and life cycles of troughs in the upper troposphere: Examples from the Southern Hemisphere summer season of 1984/85. Mon. Wea. Rev., 128, 25–50, https://doi.org/10.1175/1520-0493(2000)128<0025:WPALCO>2.0.CO;2.
Chang, E. K. M., 2001: The structure of baroclinic wave packets. J. Atmos. Sci., 58, 1694–1713, https://doi.org/10.1175/1520-0469(2001)058<1694:TSOBWP>2.0.CO;2.
Chang, E. K. M., 2005a: The impact of wave packets propagating across Asia on Pacific cyclone development. Mon. Wea. Rev., 133, 1998–2015, https://doi.org/10.1175/MWR2953.1.
Chang, E. K. M., 2005b: The role of wave packets in wave–mean-flow interactions during Southern Hemisphere summer. J. Atmos. Sci., 62, 2467–2483, https://doi.org/10.1175/JAS3491.1.
Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 999–1015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.
Chang, E. K. M., and I. Orlanski, 1994: On energy flux and group velocity of waves in baroclinic flows. J. Atmos. Sci., 51, 3823–3828, https://doi.org/10.1175/1520-0469(1994)051<3823:OEFAGV>2.0.CO;2.
Chang, E. K. M., and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci., 56, 1708–1728, https://doi.org/10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.
Chang, E. K. M., S. Y. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.
Chang, E. K. M., M. Zheng, and K. Raeder, 2013: Medium-range ensemble sensitivity analysis of two extreme Pacific extratropical cyclones. Mon. Wea. Rev., 141, 211–231, https://doi.org/10.1175/MWR-D-11-00304.1.
Charney, J., 1955: The use of the primitive equations of motion in numerical prediction. Tellus, 7, 22–26, https://doi.org/10.3402/tellusa.v7i1.8772.
Charney, J., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083.
Chen, G., J. Lu, D. A. Burrows, and L. R. Leung, 2015: Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather. Geophys. Res. Lett., 42, 10 952–10 960, https://doi.org/10.1002/2015GL066959.
Chen, H., 2015: Downstream development of baroclinic waves in the midlatitude jet induced by extratropical transition: A case study. Adv. Atmos. Sci., 32, 528–540, https://doi.org/10.1007/s00376-014-3263-8.
Cressman, G. P., 1948: On the forecasting of long waves in the upper westerlies. J. Meteor., 5, 44–57, https://doi.org/10.1175/1520-0469(1948)005<0044:OTFOLW>2.0.CO;2.
Danard, M. B., 1964: On the influence of released latent heat on cyclone development. J. Appl. Meteor., 3, 27–37, https://doi.org/10.1175/1520-0450(1964)003<0027:OTIORL>2.0.CO;2.
Danielson, R. E., J. R. Gyakum, and D. N. Straub, 2006: A case study of downstream baroclinic development over the North Pacific Ocean. Part II: Diagnoses of eddy energy and wave activity. Mon. Wea. Rev., 134, 1549–1567, https://doi.org/10.1175/MWR3173.1.
Davies, H. C., 2015: Weather chains during the 2013/2014 winter and their significance for seasonal prediction. Nat. Geosci., 8, 833, https://doi.org/10.1038/ngeo2561.
Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. Mon. Wea. Rev., 141, 2483–2501, https://doi.org/10.1175/MWR-D-12-00242.1.
Davies, H. C., C. Schär, and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci., 48, 1666–1689, https://doi.org/10.1175/1520-0469(1991)048<1666:TPOFAC>2.0.CO;2.
Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 1397–1411, https://doi.org/10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2.
Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1929–1953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.
Davis, C. A., M. T. Stoelinga, and Y. H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121, 2309–2330, https://doi.org/10.1175/1520-0493(1993)121<2309:TIEOCI>2.0.CO;2.
Davis, C. A., E. D. Grell, and M. A. Shapiro, 1996: The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Wea. Rev., 124, 3–26, https://doi.org/10.1175/1520-0493(1996)124<0003:TBDNOA>2.0.CO;2.
Davis, C. A., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714–736, https://doi.org/10.1175/2007JAS2488.1.
Decker, S. G., and J. E. Martin, 2005: A local energetics analysis of the life cycle differences between consecutive, explosively deepening, continental cyclones. Mon. Wea. Rev., 133, 295–316, https://doi.org/10.1175/MWR-2860.1.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.
de Vries, A., S. Feldstein, M. Riemer, E. Tyrlis, M. Sprenger, M. Baumgart, M. Fnais, and J. Lelieveld, 2016: Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Quart. J. Roy. Meteor. Soc., 142, 1862–1880, https://doi.org/10.1002/qj.2781.
Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 Superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 3041–3072, https://doi.org/10.1175/1520-0493(1997)125<3041:TMSCIP>2.0.CO;2.
Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505, https://doi.org/10.1175/JCLI3473.1.
Dirren, S., M. Didone, and H. C. Davies, 2003: Diagnosis of “forecast-analysis” differences of a weather prediction system. Geophys. Res. Lett., 30, 2060, https://doi.org/10.1029/2003GL017986.
Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855–874, https://doi.org/10.1175/2007JAS2227.1.
Drouard, M., G. Rivière, and P. Arbogast, 2015: The link between the North Pacific climate variability and the North Atlantic oscillation via downstream propagation of synoptic waves. J. Climate, 28, 3957–3976, https://doi.org/10.1175/JCLI-D-14-00552.1.
Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 2476–2488, https://doi.org/10.1175/JAS-D-14-0007.1.
Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1A, 33–52, https://doi.org/10.1111/j.2153-3490.1949.tb01265.x.
Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 1–23.
Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 1559–1573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.
Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz. Meteor. Z., 59, 271–281.
Esler, J. G., 1997: Wave packets in simple equilibrated baroclinic systems. J. Atmos. Sci., 54, 2820–2849, https://doi.org/10.1175/1520-0469(1997)054<2820:WPISEB>2.0.CO;2.
Esler, J. G., 2004: Benjamin–Feir instability of Rossby wave on a jet. Quart. J. Roy. Meteor. Soc., 130, 1611–1630, https://doi.org/10.1256/qj.03.74.
Esler, J. G., and P. H. Haynes, 1999a: Baroclinic wave breaking and the internal variability of the troposheric circulation. J. Atmos. Sci., 56, 4014–4031, https://doi.org/10.1175/1520-0469(1999)056<4014:BWBATI>2.0.CO;2.
Esler, J. G., and P. H. Haynes, 1999b: Mechanisms for wave packet formation and maintenance in a quasigeostrophic two-layer model. J. Atmos. Sci., 56, 2457–2464, https://doi.org/10.1175/1520-0469(0)056<2457:MFWPFA>2.0.CO;2.
Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 4317–4344, https://doi.org/10.1175/MWR-D-17-0027.1.
Farrell, B., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 1663–1686, https://doi.org/10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2.
Feldstein, S. B., and U. Dayan, 2008: Circumglobal teleconnections and wave packets associated with Israeli winter precipitation. Quart. J. Roy. Meteor. Soc., 134, 455–467, https://doi.org/10.1002/qj.225.
Ferreira, R. N., and W. H. Schubert, 1999: The role of tropical cyclones in the formation of tropical upper-tropospheric troughs. J. Atmos. Sci., 56, 2891–2907, https://doi.org/10.1175/1520-0469(1999)056<2891:TROTCI>2.0.CO;2.
Fragkoulidis, G., V. Wirth, P. Bossmann, and A. H. Fink, 2018: Linking Northern Hemisphere temperature extremes to Rossby wave packets. Quart. J. Roy. Meteor. Soc., 144, 553–566, https://doi.org/10.1002/qj.3228.
Gabor, D., 1946: Theory of communication. J. IEEE, 93, 429–457.
Gabriel, A., and D. Peters, 2008: A diagnostic study of different types of Rossby wave breaking events in the northern extratropics. J. Meteor. Soc. Japan, 86, 613–631, https://doi.org/10.2151/jmsj.86.613.
Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 3272–3297, https://doi.org/10.1175/2010MWR3243.1.
Galarneau, T. J., Jr., T. M. Hamill, R. M. Dole, and J. Perlwitz, 2012: A multiscale analysis of the extreme weather events over western Russia and northern Pakistan during July 2010. Mon. Wea. Rev., 140, 1639–1664, https://doi.org/10.1175/MWR-D-11-00191.1.
Giannakaki, P., and O. Martius, 2016: An object-based forecast verification tool for synoptic-scale Rossby waveguides. Wea. Forecasting, 31, 937–946, https://doi.org/10.1175/WAF-D-15-0147.1.
Gidel, L. T., and M. A. Shapiro, 1979: The role of clear air turbulence in the production of potential vorticity in the vicinity of upper tropospheric jet stream-frontal systems. J. Atmos. Sci., 36, 2125–2138, https://doi.org/10.1175/1520-0469(1979)036<2125:TROCAT>2.0.CO;2.
Glatt, I., and V. Wirth, 2014: Identifying Rossby wave trains and quantifying their properties. Quart. J. Roy. Meteor. Soc., 140, 384–396, https://doi.org/10.1002/qj.2139.
Glatt, I., A. Dörnbrack, S. Jones, J. Keller, O. Martius, A. Müller, D. H. W. Peters, and V. Wirth, 2011: Utility of Hovmöller diagrams to diagnose Rossby wave trains. Tellus, 63A, 991–1006, https://doi.org/10.1111/j.1600-0870.2011.00541.x.
Golding, B., 1984: A study of the structure of midlatitude depressions in a numerical model using trajectory techniques. I: Development of ideal baroclinic waves in dry and moist atmospheres. Quart. J. Roy. Meteor. Soc., 110, 847–879, https://doi.org/10.1002/qj.49711046605.
Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 3847–3869, https://doi.org/10.1175/MWR-D-15-0419.1.
Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 2174–2193, https://doi.org/10.1002/qj.891.
Grams, C. M., S. C. Jones, C. A. Davis, P. A. Harr, and M. Weissmann, 2013a: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridgebuilding and modification of the jet. Quart. J. Roy. Meteor. Soc., 139, 2148–2164, https://doi.org/10.1002/qj.2091.
Grams, C. M., S. C. Jones, and C. A. Davis, 2013b: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part II: Downstream evolution. Quart. J. Roy. Meteor. Soc., 139, 2165–2180, https://doi.org/10.1002/qj.2119.
Grams, C. M., S. T. Lang, and J. H. Keller, 2015: A quantitative assessment of the sensitivity of the downstream midlatitude flow response to extratropical transition of tropical cyclones. Geophys. Res. Lett., 42, 9521–9529, https://doi.org/10.1002/2015GL065764.
Gray, S., C. Dunning, J. Methven, G. Masato, and J. Chagnon, 2014: Systematic model forecast error in Rossby wave structure. Geophys. Res. Lett., 41, 2979–2987, https://doi.org/10.1002/2014GL059282.
Grazzini, F., 2007: Predictability of a large-scale flow conductive to extreme precipitation over the western Alps. Meteor. Atmos. Phys., 95, 123–138, https://doi.org/10.1007/s00703-006-0205-8.
Grazzini, F., and G. van der Grijn, 2002: Central European floods during summer 2002. ECMWF Newsletter, No. 96, ECMWF, Reading, United Kingdom, 18–28.
Grazzini, F., and V. Lucarini, 2011: Climatology of extratropical atmospheric wave packets in the Northern Hemisphere. https://arxiv.org/abs/1011.3564.
Grazzini, F., and F. Vitart, 2015: Atmospheric predictability and Rossby wave packets. Quart. J. Roy. Meteor. Soc., 141, 2793–2802, https://doi.org/10.1002/qj.2564.
Gutowski, W. J., L. E. Branscome, and D. A. Stewart, 1992: Life cycles of moist baroclinic waves. J. Atmos. Sci., 49, 306–319, https://doi.org/10.1175/1520-0469(1992)049<0306:LCOMBE>2.0.CO;2.
Gyakum, J. R., 1983: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 1156–1173, https://doi.org/10.1175/1520-0493(1983)111<1156:OTEOTI>2.0.CO;2.
Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 2824–2837, https://doi.org/10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.
Hakim, G. J., 2005: Vertical structure of midlatitude analysis and forecast errors. Mon. Wea. Rev., 133, 567–578, https://doi.org/10.1175/MWR-2882.1.
Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 2570–2584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.
Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 1295–1319, https://doi.org/10.1175/2008MWR2558.1.
Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 3205–3225, https://doi.org/10.1175/2008MWR2248.1.
Harvey, B., J. Methven, and M. Ambaum, 2016: Rossby wave propagation on potential vorticity fronts with finite width. J. Fluid Mech., 794, 775–797, https://doi.org/10.1017/jfm.2016.180.
Haurwitz, B., 1940: The motion of atmospheric disturbances on the spherical earth. J. Mar. Res., 3, 254–267.
Hayes, M., 1977: A note on group velocity. Proc. Roy. Soc. London, 354A, 533–535, https://doi.org/10.1098/rspa.1977.0082.
Heifetz, E., C. H. Bishop, B. J. Hoskins, and J. Methven, 2004: The counter-propagating Rossby-wave perspective on baroclinic instability. I: Mathematical basis. Quart. J. Roy. Meteor. Soc., 130, 211–231, https://doi.org/10.1002/qj.200413059610.
Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: theory. Large Scale Dynamical Processes, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.
Henderson, J. M., G. M. Lackmann, and J. R. Gyakum, 1999: An analysis of Hurricane Opal’s forecast track errors using quasigeostrophic potential vorticity inversion. Mon. Wea. Rev., 127, 292–307, https://doi.org/10.1175/1520-0493(1999)127<0292:AAOHOS>2.0.CO;2.
Hodyss, D., and E. Hendricks, 2010: The resonant excitation of baroclinic waves by the divergent circulation of recurving tropical cyclones. J. Atmos. Sci., 67, 3600–3616, https://doi.org/10.1175/2010JAS3459.1.
Hohenegger, C., and C. Schär, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 1783–1793, https://doi.org/10.1175/BAMS-88-11-1783.
Hollingsworth, B. A., A. Lorenc, M. Tracton, K. Arpe, G. Cats, S. Uppala, and P. Kållberg, 1985: The response of numerical weather prediction systems to FGGE level IIb data. Part I: Analyses. Quart. J. Roy. Meteor. Soc., 111, 1–66, https://doi.org/10.1002/qj.49711146702.
Holman, K. D., D. J. Lorenz, and M. Notaro, 2014: Influence of the background state on Rossby wave propagation into the Great Lakes region based on obervations and model simulations. J. Climate, 27, 9302–9322, https://doi.org/10.1175/JCLI-D-13-00758.1.
Holton, J. R., 1976: A semi-spectral numerical model for wave–mean flow interactions in the stratosphere: Application to sudden stratospheric warmings. J. Atmos. Sci., 33, 1639–1649, https://doi.org/10.1175/1520-0469(1976)033<1639:ASSNMF>2.0.CO;2.
Holton, J. R., 2004: An Introduction to Dynamical Meteorology. 4th ed. Elsevier Academic Press, 529 pp.
Hoskins, B. J., 1975: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci., 32, 233–242, https://doi.org/10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2.
Hoskins, B. J., 1990: Fronts, jets and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton, and E. O. Holopainen, Eds., Amer. Meteor. Soc., 63–80.
Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
Hoskins, B. J., and P. Berrisford, 1988: A potential vorticity view of the storm of 15-16 October 1987. Weather, 43, 122–129, https://doi.org/10.1002/j.1477-8696.1988.tb03890.x.
Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.
Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 1661–1671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.
Hoskins, B. J., and I. N. James, 2014: Fluid Dynamics of the Midlatitude Atmosphere. Wiley, 408 pp., https://doi.org/10.1002/9781118526002.
Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595–1611, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002.
Hovmöller, E., 1949: The trough-and-ridge diagram. Tellus, 1, 62–66.
Hsu, H.-H., and S.-H. Lin, 1992: Global teleconnections in the 250-mb streamfunction field during the Northern Hemisphere winter. Mon. Wea. Rev., 120, 1169–1190, https://doi.org/10.1175/1520-0493(1992)120<1169:GTITMS>2.0.CO;2.
Huang, C. S. Y., and N. Nakamura, 2016: Local finite-amplitude wave activity as a diagnostic of anomalous weather events. J. Atmos. Sci., 73, 211–229, https://doi.org/10.1175/JAS-D-15-0194.1.
Huang, C. S. Y., and N. Nakamura, 2017: Local wave activity budgets of the wintertime Northern Hemisphere: Implications for the Pacific and Atlantic storm tracks. Geophys. Res. Lett., 44, 5673–5682, https://doi.org/10.1002/2017GL073760.
Jacques-Coper, M., S. Broennimann, O. Martius, C. Vera, and B. Cerne, 2016: Summer heat waves in southeastern Patagonia: An analysis of the intraseasonal timescale. Int. J. Climatol., 36, 1359–1374, https://doi.org/10.1002/joc.4430.
Jones, G. S., S. F. B. Tett, and P. A. Stott, 2003a: Causes of atmospheric temperature change 1960–2000: A combined attribution analysis. Geophys. Res. Lett., 30, 1228, https://doi.org/10.1029/2002GL016377.
Jones, S. C., and Coauthors, 2003b: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 1052–1092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.
Joung, C. H., and M. H. Hitchman, 1982: On the role of successive downstream development in East Asian polar air outbreaks. Mon. Wea. Rev., 110, 1224–1237, https://doi.org/10.1175/1520-0493(1982)110<1224:OTROSD>2.0.CO;2.
Kaspi, Y., and T. Schneider, 2011: Downstream self-destruction of strom tracks. J. Atmos. Sci., 68, 2459–2464, https://doi.org/10.1175/JAS-D-10-05002.1.
Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 2596–2613, https://doi.org/10.1175/JAS-D-12-082.1.
Keller, J. H., S. C. Jones, J. L. Evans, and P. A. Harr, 2011: Characteristics of the TIGGE multimodel ensemble prediction system in representing forecast variability associated with extratropical transition. Geophys. Res. Lett., 38, L12802, https://doi.org/10.1029/2011GL047275.
Keller, J. H., S. C. Jones, and P. A. Harr, 2014: An eddy kinetic energy view of physical and dynamical processes in distinct forecast scenarios for the extratropical transition of two tropical cyclones. Mon. Wea. Rev., 142, 2751–2771, https://doi.org/10.1175/MWR-D-13-00219.1.
Kew, S. F., M. Sprenger, and H. C. Davies, 2010: Potential vorticity anomalies of the lowermost stratosphere: A 10-yr winter climatology. Mon. Wea. Rev., 138, 1234–1249, https://doi.org/10.1175/2009MWR3193.1.
Keyser, D., and R. Rotunno, 1990: On the formation of potential-vorticity anomalies in upper-level jet-front systems. Mon. Wea. Rev., 118, 1914–1921, https://doi.org/10.1175/1520-0493(1990)118<1914:OTFOPV>2.0.CO;2.
Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on the tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433–440, https://doi.org/10.1038/ngeo2424.
Kleinschmidt, E., 1950: Über Aufbau und Entstehung von Zyklonen II. Meteor. Rundsch., 3, 84–61.
Krishnamurti, T. N., J. Molinari, H. Pan, and V. Wong, 1977: Downstream amplification and formation of monsoon disturbances. Mon. Wea. Rev., 105, 1281–1297, https://doi.org/10.1175/1520-0493(1977)105<1281:DAAFOM>2.0.CO;2.
Krishnamurti, Y., T. S. V. Vijaya Kumar, K. Rajendran, and A. Hopkins, 2003: Antecedents of the flooding over south-eastern England during October 2000. Weather, 58, 367–370, https://doi.org/10.1256/wea.230.02.
Langland, R. H., M. A. Shapiro, and R. Gelaro, 2002: Initial condition sensitivity and error growth in forecasts of the 25 January 2000 East Coast snowstorm. Mon. Wea. Rev., 130, 957–974, https://doi.org/10.1175/1520-0493(2002)130<0957:ICSAEG>2.0.CO;2.
Lapeyre, G., and I. M. Held, 2004: The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61, 1693–1710, https://doi.org/10.1175/1520-0469(2004)061<1693:TROMIT>2.0.CO;2.
Lee, S., 1995: Localized storm tracks in the absence of local instability. J. Atmos. Sci., 52, 977–989, https://doi.org/10.1175/1520-0469(1995)052<0977:LSTITA>2.0.CO;2.
Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci., 50, 1413–1428, https://doi.org/10.1175/1520-0469(1993)050<1413:BWPIMA>2.0.CO;2.
Lee, S., and S. Feldstein, 1996: Two types of wave breaking in an aquaplanet GCM. J. Atmos. Sci., 53, 842–857, https://doi.org/10.1175/1520-0469(1996)053<0842:TTOWBI>2.0.CO;2.
Lee, S., and H.-K. Kim, 2003: The dynamic relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 1490–1503, https://doi.org/10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.
Li, X., E. P. Gerber, D. M. Holland, and C. Yoo, 2015: A Rossby wave bridge from the tropical Atlantic to West Antarctica. J. Climate, 28, 2256–2273, https://doi.org/10.1175/JCLI-D-14-00450.1.
Lighthill, M. J., 1967: Waves in fluids. Commun. Pure Appl. Math., 20, 267–293, https://doi.org/10.1002/cpa.3160200204.
Lim, G. H., and J. M. Wallace, 1991: Structure and evolution of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 48, 1718–1732, https://doi.org/10.1175/1520-0469(1991)048<1718:SAEOBW>2.0.CO;2.
Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 1212–1227, https://doi.org/10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.
Lorenz, E. N., 1972: Barotropic instability of Rossby wave motion. J. Atmos. Sci., 29, 258–265, https://doi.org/10.1175/1520-0469(1972)029<0258:BIORWM>2.0.CO;2.
Lu, J., G. Chen, and D. M. W. Frierson, 2010: The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J. Atmos. Sci., 67, 3984–4000, https://doi.org/10.1175/2010JAS3477.1.
Madonna, E., S. Limbach, C. Aebi, H. Joos, H. Wernli, and O. Martius, 2014a: On the co-occurrence of warm conveyor belt outflows and PV streamers. J. Atmos. Sci., 71, 3668–3673, https://doi.org/10.1175/JAS-D-14-0119.1.
Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014b: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 3–26, https://doi.org/10.1175/JCLI-D-12-00720.1.
Madonna, E., M. Boettcher, C. M. Grams, H. Joos, O. Martius, and H. Wernli, 2015: Verification of North Atlantic warm conveyor belt outflows in ECMWF forecasts. Quart. J. Roy. Meteor. Soc., 141, 1333–1344, https://doi.org/10.1002/qj.2442.
Majumdar, S. J., K. J. Sellwood, D. Hodyss, Z. Toth, and Y. Song, 2010: Characteristics of target areas selected by the ensemble transform Kalman filter for medium-range forecasts of high-impact winter weather. Mon. Wea. Rev., 138, 2803–2824, https://doi.org/10.1175/2010MWR3106.1.
Manola, I., F. Selten, H. de Vries, and W. Hazeleger, 2013: “Waveguidability” of idealized jets. J. Geophys. Res. Atmos., 118, 10 432–10 440, https://doi.org/10.1002/jgrd.50758.
Marengo, J. A., T. Ambrizzi, G. Kiladis, and B. Liebmann, 2002: Upper-air wave trains over the Pacific Ocean and wintertime cold surges in tropical-subtropical South America leading to freezes in southern and southeastern Brazil. Theor. Appl. Climatol., 73, 223–242, https://doi.org/10.1007/s00704-001-0669-x.
Martínez-Alvarado, O., E. Madonna, S. Gray, and H. Joos, 2016: A route to systematic error in forecasts of Rossby waves. Quart. J. Roy. Meteor. Soc., 142, 196–210, https://doi.org/10.1002/qj.2645.
Martius, O., C. Schwierz, and H. C. Davies, 2006: A refined Hovmöller diagram. Tellus, 58A, 221–226, https://doi.org/10.1111/j.1600-0870.2006.00172.x.
Martius, O., C. Schwierz, and H. C. Davies, 2008: Far-upstream precursors of heavy precipitation events on the Alpine south-side. Quart. J. Roy. Meteor. Soc., 134, 417–428, https://doi.org/10.1002/qj.229.
Martius, O., C. Schwierz, and H. C. Davies, 2010: Tropopause-level waveguides. J. Atmos. Sci., 67, 866–879, https://doi.org/10.1175/2009JAS2995.1.
Masato, G., B. J. Hoskins, and T. J. Woolings, 2012: Wave-breaking characteristics of midlatitude blocking. Quart. J. Roy. Meteor. Soc., 138, 1285–1296, https://doi.org/10.1002/qj.990.
Massacand, A. C., H. Wernli, and H. C. Davies, 1998: Heavy precipitation on the Alpine southside: An upper-level precursor. Geophys. Res. Lett., 25, 1435–1438, https://doi.org/10.1029/98GL50869.
Massacand, A. C., H. Wernli, and H. C. Davies, 2001: Influence of upstream diabatic heating upon an alpine event of heavy precipitation. Mon. Wea. Rev., 129, 2822–2828, https://doi.org/10.1175/1520-0493(2001)129<2822:IOUDHU>2.0.CO;2.
McIntyre, M. E., and T. N. Palmer, 1984: The ‘surf zone’ in the stratosphere. J. Atmos. Terr. Phys., 46, 825–849, https://doi.org/10.1016/0021-9169(84)90063-1.
Merkine, L.-O., 1977: Convective and absolute instability of baroclinic eddies. Geophys. Astrophys. Fluid Dyn., 9, 129–157, https://doi.org/10.1080/03091927708242322.
Methven, J., 2013: Wave activity for large-amplitude disturbances described by the primitive equations on the sphere. J. Atmos. Sci., 70, 1616–1630, https://doi.org/10.1175/JAS-D-12-0228.1.
Methven, J., and P. Berrisford, 2015: The slowly evolving background state of the atmosphere. Quart. J. Roy. Meteor. Soc., 141, 2237–2258, https://doi.org/10.1002/qj.2518.
Milrad, S. M., J. R. Gyakum, and E. H. Atallah, 2015: A meteorological analysis of the 2013 Alberta flood: Antecedent large-scale flow pattern and synoptic-dynamic characteristics. Mon. Wea. Rev., 143, 2817–2841, https://doi.org/10.1175/MWR-D-14-00236.1.
Nakamura, N., and A. Solomon, 2010: Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I: Quasigeostrophic theory and analysis. J. Atmos. Sci., 67, 3967–3983, https://doi.org/10.1175/2010JAS3503.1.
Nakamura, N., and A. Solomon, 2011: Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part II: Analysis in the isentropic coordinate. J. Atmos. Sci., 68, 2783–2799, https://doi.org/10.1175/2011JAS3685.1.
Nakamura, N., and C. S. Y. Huang, 2017: Local wave activity and the onset of blocking along a potential vorticity front. J. Atmos. Sci., 74, 2341–2362, https://doi.org/10.1175/JAS-D-17-0029.1.
Namias, J., and P. F. Clapp, 1944: Studies of the motion and development of long waves in the westerlies. J. Meteor., 1, 57–77, https://doi.org/10.1175/1520-0469(1944)001<0057:SOTMAD>2.0.CO;2.
Newman, M., and P. D. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 1336–1353, https://doi.org/10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.
Nielsen-Gammon, J. W., and R. J. Lefevre, 1996: Piecewise tendency diagnosis of dynamical processes governing the development of an upper-tropospheric mobile trough. J. Atmos. Sci., 53, 3120–3142, https://doi.org/10.1175/1520-0469(1996)053<3120:PTDODP>2.0.CO;2.
Novak, L., M. H. P. Ambaum, and R. Tailleux, 2015: The life cycle of the North Atlantic storm track. J. Atmos. Sci., 72, 821–833, https://doi.org/10.1175/JAS-D-14-0082.1.
O’Kane, T. J., J. S. Risbey, D. P. Monselesan, I. Horenko, and C. L. E. Franzke, 2016: On the dynamics of persistent states and their secular trends in the waveguides of the Southern Hemisphere troposphere. Climate Dyn., 46, 3567–3597, https://doi.org/10.1007/s00382-015-2786-8.
Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 1972–1998, https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.
Orlanski, I., and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci., 50, 212–225, https://doi.org/10.1175/1520-0469(1993)050<0212:AGFIDA>2.0.CO;2.
Orlanski, I., and J. P. Sheldon, 1993: A case of downstream baroclinic development over western North America. Mon. Wea. Rev., 121, 2929–2950, https://doi.org/10.1175/1520-0493(1993)121<2929:ACODBD>2.0.CO;2.
Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605–628, https://doi.org/10.3402/tellusa.v47i5.11553.
Pantillon, F., J. Chaboureau, C. Lac, and P. Mascart, 2013a: On the role of a Rossby wave train during the extratropical transition of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 139, 370–386, https://doi.org/10.1002/qj.1974.
Pantillon, F., J. Chaboureau, P. Mascart, and C. Lac, 2013b: Predictability of a Mediterranean tropical-like storm downstream of the extratropical transition of Hurricane Helene (2006). Mon. Wea. Rev., 141, 1943–1962, https://doi.org/10.1175/MWR-D-12-00164.1.
Pantillon, F., J. Chaboureau, and E. Richard, 2015: Remote impact of North Atlantic hurricanes on the Mediterranean during episodes of intense rainfall in autumn 2012. Quart. J. Roy. Meteor. Soc., 141, 967–978, https://doi.org/10.1002/qj.2419.
Parker, T. J., G. J. Berry, and M. J. Reeder, 2014: The structure and evolution of heat waves in southeastern Australia. J. Climate, 27, 5768–5785, https://doi.org/10.1175/JCLI-D-13-00740.1.
Parsons, D., and Coauthors, 2017: THORPEX research and the science of prediction. Bull. Amer. Meteor. Soc., 98, 807–830, https://doi.org/10.1175/BAMS-D-14-00025.1.
Persson, A., 2017: The story of the Hovmöller diagram—An (almost) eyewitness account. Bull. Amer. Meteor. Soc., 98, 949–957, https://doi.org/10.1175/BAMS-D-15-00234.1.
Pfeffer, R. L., 1981: Wave–mean flow interactions in the atmosphere. J. Atmos. Sci., 38, 1340–1359, https://doi.org/10.1175/1520-0469(1981)038<1340:WMFIIT>2.0.CO;2.
Piaget, N., P. Froidevaux, P. Giannakaki, F. Gierth, O. Martius, M. Riemer, G. Wolf, and C. M. Grams, 2015: Dynamics of a local alpine flooding event in October 2011: Moisture source and large-scale circulation. Quart. J. Roy. Meteor. Soc., 141, 1922–1937, https://doi.org/10.1002/qj.2496.
Platzman, G. W., 1949: The motion of barotropic disturbances in the upper troposphere. Tellus, 1, 53–64, https://doi.org/10.1111/j.2153-3490.1949.tb01266.x.
Platzman, G. W., 1968: The Rossby wave. Quart. J. Roy. Meteor. Soc., 94, 225–248, https://doi.org/10.1002/qj.49709440102.
Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow. J. Atmos. Sci., 43, 1657–1678, https://doi.org/10.1175/1520-0469(1986)043<1657:TDPOTQ>2.0.CO;2.
Pomroy, H. R., and A. J. Thorpe, 2000: The evolution and dynamical role of reduced upper-tropospheric potential vorticity in intensive observing period one of FASTEX. Mon. Wea. Rev., 128, 1817–1834, https://doi.org/10.1175/1520-0493(2000)128<1817:TEADRO>2.0.CO;2.
Pyle, M. E., D. Keyser, and L. F. Bosart, 2004: A diagnostic study of jet streaks: Kinematic signatures and relationship to coherent tropopause disturbances. Mon. Wea. Rev., 132, 297–319, https://doi.org/10.1175/1520-0493(2004)132<0297:ADSOJS>2.0.CO;2.
Quinting, J. F., and S. C. Jones, 2016: On the impact of tropical cyclones on Rossby wave packets: A climatological perspective. Mon. Wea. Rev., 144, 2021–2048, https://doi.org/10.1175/MWR-D-14-00298.1.
Randel, W. J., and J. L. Stanford, 1985: An observational study of medium-scale wave dynamics in the Southern Hemisphere summer. Part I: Wave structure and energetics. J. Atmos. Sci., 42, 1172–1188, https://doi.org/10.1175/1520-0469(1985)042<1172:AOSOMS>2.0.CO;2.
Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893–913, https://doi.org/10.1175/1520-0493(1992)120<0893:AMASOT>2.0.CO;2.
Reynolds, C. A., M. S. Peng, and J.-H. Chen, 2009: Recurving tropical cyclones: Singular vector sensitivity and impacts. Mon. Wea. Rev., 137, 1320–1337, https://doi.org/10.1175/2008MWR2652.1.
Rhines, P. B., 2002: Rossby waves. Encyclopedia of Atmospheric Sciences, J. Holton and J. Curry, Eds., Elsevier, 1923–1939.
Riemer, M., and S. C. Jones, 2010: The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617–637, https://doi.org/10.1002/qj.605.
Riemer, M., and S. C. Jones, 2014: Interaction of a tropical cyclone with a high-amplitude, midlatitude wave pattern: Waviness analysis, trough deformation and track bifurcation. Quart. J. Roy. Meteor. Soc., 140, 1362–1376, https://doi.org/10.1002/qj.2221.
Riemer, M., S. C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the flow: An idealized modelling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 69–91, https://doi.org/10.1002/qj.189.
Riemer, M., M. Baumgart, and S. Eiermann, 2014: Cyclogenesis downstream of extratropical transition analyzed by Q-vector partitioning based on flow geometry. J. Atmos. Sci., 71, 4204–4220, https://doi.org/10.1175/JAS-D-14-0023.1.
Ritchie, E. A., and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical cyclones. Mon. Wea. Rev., 135, 862–876, https://doi.org/10.1175/MWR3303.1.
Rivière, G., P. Arbogast, and A. Joly, 2015: Eddy kinetic energy redistribution within windstorms Klaus and Friedhelm. Quart. J. Roy. Meteor. Soc., 141, 925–938, https://doi.org/10.1002/qj.2412.
Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63, 2109–2122, https://doi.org/10.1175/JAS3732.1.
Rodwell, M. J., and Coauthors, 2013: Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 1393–1405, https://doi.org/10.1175/BAMS-D-12-00099.1.
Roebber, P. J., D. M. Schultz, and R. Romero, 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 399–429, https://doi.org/10.1175/1520-0434(2002)017<0399:SROTMT>2.0.CO;2.
Rossby, C.-G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66, 68–87.
Rossby, C.-G., 1945: On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves. J. Meteor., 2, 187–204, https://doi.org/10.1175/1520-0469(1945)002<0187:OTPOFA>2.0.CO;2.
Rossby, C.-G., and Coauthors, 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 38–55, https://doi.org/10.1357/002224039806649023.
Röthlisberger, M., O. Martius, and H. Wernli, 2016: An algorithm for identifying the initiation of synoptic-scale Rossby waves on PV waveguides. Quart. J. Roy. Meteor. Soc., 142, 889–900, https://doi.org/10.1002/qj.2690.
Rotunno, R., W. C. Skamarock, and C. Snyder, 1994: An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci., 51, 3373–3398, https://doi.org/10.1175/1520-0469(1994)051<3373:AAOFIN>2.0.CO;2.
Sanders, F., 1986: Explosive cyclogenesis in the west-central north Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 1781–1794, https://doi.org/10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.
Sanders, F., 1988: Life history of mobile troughs in the upper westerlies. Mon. Wea. Rev., 116, 2629–2648, https://doi.org/10.1175/1520-0493(1988)116<2629:LHOMTI>2.0.CO;2.
Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 1589–1606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.
Scheck, L., S. C. Jones, and M. Juckes, 2011a: The resonant interaction of a tropical cyclone and a tropopause front in a barotropic model. Part I: Zonally oriented front. J. Atmos. Sci., 68, 405–419, https://doi.org/10.1175/2010JAS3482.1.
Scheck, L., S. C. Jones, and M. Juckes, 2011b: The resonant interaction of a tropical cyclone and a tropopause front in a barotropic model. Part II: Frontal waves. J. Atmos. Sci., 68, 420–429, https://doi.org/10.1175/2010JAS3483.1.
Schneider, T., I. M. Held, and S. T. Garner, 2003: Boundary effects in potential vorticity dynamics. J. Atmos. Sci., 60, 1024–1040, https://doi.org/10.1175/1520-0469(2003)60<1024:BEIPVD>2.0.CO;2.
Schneidereit, A., and Coauthors, 2017: Enhanced tropospheric wave forcing of two anticyclones in the prephase of the January 2009 major stratospheric sudden warming event. Mon. Wea. Rev., 145, 1797–1815, https://doi.org/10.1175/MWR-D-16-0242.1.
Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004a: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125, https://doi.org/10.1029/2003GL019341.
Schwierz, C., S. Dirren, and H. C. Davies, 2004b: Forced waves on a zonally aligned jet stream. J. Atmos. Sci., 61, 73–87, https://doi.org/10.1175/1520-0469(2004)061<0073:FWOAZA>2.0.CO;2.
Sellwood, K. J., S. J. Majumdar, B. E. Mapes, and I. Szunyogh, 2008: Predicting the influence of observations on medium-range forecasts of atmospheric flow. Quart. J. Roy. Meteor. Soc., 134, 2011–2027, https://doi.org/10.1002/qj.341.