• Agustí-Panareda, A., C. D. Thorncroft, G. C. Craig, and S. L. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential-vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074, https://doi.org/10.1256/qj.02.140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., S. L. Gray, G. C. Craig, and C. Thorncroft, 2005: The extratropical transition of Tropical Cyclone Lili (1996) and its crucial contribution to a moderate extratropical development. Mon. Wea. Rev., 133, 15621573, https://doi.org/10.1175/MWR2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiyyer, A., 2015: Recurving western North Pacific tropical cyclones and midlatitude predictability. Geophys. Res. Lett., 42, 77997807, https://doi.org/10.1002/2015GL065082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32263247, https://doi.org/10.1175/2008MWR2249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anwender, D., S. C. Jones, M. Leutbecher, and P. A. Harr, 2010: Sensitivity experiments for ensemble forecasts of the extratropical transition of Typhoon Tokage (2004). Quart. J. Roy. Meteor. Soc., 136, 183200, https://doi.org/10.1002/qj.527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, https://doi.org/10.1175/MWR-D-12-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 11221141, https://doi.org/10.1175/MWR-D-14-00270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, R., 2018: National Hurricane Center Tropical Cyclone Report: Hurricane Jose (5–22 September 2017). Tech. Rep. AL122017, National Hurricane Center, 36 pp., https://www.nhc.noaa.gov/data/tcr/AL122017_Jose.pdf.

  • Bosart, L. F., 2003: Tropopause folding: Upper-level frontogenesis, and beyond. A Half Century of Progress in Meteorology: A Tribute to Richard Reed, Meteor. Monogr., No. 31, Amer. Meteor. Soc., 13–47.

    • Crossref
    • Export Citation
  • Colbert, A. J., and B. J. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657673, https://doi.org/10.1175/JCLI-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, P., and D. Keyser, 2000: Analytical and numerical modelling of jet streaks: Barotropic dynamics. Quart. J. Roy. Meteor. Soc., 126, 31873217, https://doi.org/10.1002/qj.49712657010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. Tibshirani, 1994: An Introduction to the Bootstrap. Chapman & Hall, 456 pp.

  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., and J. D. Doyle, 2019: How the speed and latitude of the jet stream affect the downstream response to recurving tropical cyclones. Mon. Wea. Rev., 147, 32613281, https://doi.org/10.1175/MWR-D-19-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 12951313, https://doi.org/10.1175/MWR-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, J. P., and T. J. Galarneau, 2017: Influence of storm–storm and storm–environment interactions on tropical cyclone formation and evolution. Mon. Wea. Rev., 145, 48554875, https://doi.org/10.1175/MWR-D-17-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., 2006: Tropical cyclone report: Hurricane Philippe (2005). Tech. Rep. AL172005, National Hurricane Center, 10 pp., https://www.nhc.noaa.gov/data/tcr/AL172005_Philippe.pdf.

  • Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, https://doi.org/10.1002/qj.49704720010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405430, https://doi.org/10.1175/MWR-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., R. McTaggart-Cowan, L. F. Bosart, and C. A. Davis, 2015: Development of North Atlantic tropical disturbances near upper-level potential vorticity streamers. J. Atmos. Sci., 72, 572597, https://doi.org/10.1175/JAS-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, https://doi.org/10.1002/qj.891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. C. Jones, C. A. Davis, P. A. Harr, and M. Weissmann, 2013a: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridgebuilding and modification of the jet. Quart. J. Roy. Meteor. Soc., 139, 21482164, https://doi.org/10.1002/qj.2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. C. Jones, and C. A. Davis, 2013b: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part II: Downstream evolution. Quart. J. Roy. Meteor. Soc., 139, 21652180, https://doi.org/10.1002/qj.2119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. T. K. Lang, and J. H. Keller, 2015: A quantitative assessment of the sensitivity of the downstream midlatitude flow response to extratropical transition of tropical cyclones. Geophys. Res. Lett., 42, 95219529, https://doi.org/10.1002/2015GL065764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319, https://doi.org/10.1175/2008MWR2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and H. M. Archambault, 2016: Dynamics, predictability, and high-impact weather associated with the extratropical transition of tropical cyclones. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. Li et al., Eds., Cambridge University Press, 153–167, https://doi.org/10.1017/CBO9781107775541.013.

    • Crossref
    • Export Citation
  • Hart, R. E., R. N. Maue, and M. C. Watson, 2007: Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon. Wea. Rev., 135, 39904005, https://doi.org/10.1175/2007MWR2038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, https://doi.org/10.1175/2008MWR2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JTWC, 2019: Best track data. Joint Typhoon Warning Center, accessed December 2018, https://www.metoc.navy.mil/jtwc/jtwc.html?western-pacific.

  • Keller, J. H., 2017: Amplification of the downstream wave train during extratropical transition: Sensitivity studies. Mon. Wea. Rev., 145, 15291548, https://doi.org/10.1175/MWR-D-16-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. C. Jones, J. L. Evans, and P. A. Harr, 2011: Characteristics of the TIGGE multimodel ensemble prediction system in representing forecast variability associated with extratropical transition. Geophys. Res. Lett., 38, L12802, https://doi.org/10.1029/2011GL047275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., and Coauthors, 2019: The extratropical transition of tropical cyclones. Part II: Interaction with the midlatitude flow, downstream impacts, and implications for predictability. Mon. Wea. Rev., 147, 10771106, https://doi.org/10.1175/MWR-D-17-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian oscillation–Atlantic hurricane relationship. J. Climate, 23, 282293, https://doi.org/10.1175/2009JCLI2978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2014: The Madden–Julian oscillation’s impacts on worldwide tropical cyclone activity. J. Climate, 27, 23172330, https://doi.org/10.1175/JCLI-D-13-00483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and J. D. Doyle, 2018: On the dynamics of tropical cyclone and trough interactions. J. Atmos. Sci., 75, 26872709, https://doi.org/10.1175/JAS-D-17-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., S. J. Majumdar, and E. D. Rappin, 2011: Diagnosing initial condition sensitivity of Typhoon Sinlaku (2008) and Hurricane Ike (2008). Mon. Wea. Rev., 139, 32243242, https://doi.org/10.1175/MWR-D-10-05018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krouse, K. D., A. H. Sobel, and L. M. Polvani, 2008: On the wavelength of the Rossby waves radiated by tropical cyclones. J. Atmos. Sci., 65, 644654, https://doi.org/10.1175/2007JAS2402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88, 197202, https://doi.org/10.1029/2007EO180001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 29192930, https://doi.org/10.1175/JCLI-D-12-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2007: Hurricane Katrina (2005). Part II: Evolution and hemispheric impacts of a diabatically generated warm pool. Mon. Wea. Rev., 135, 39273949, https://doi.org/10.1175/2007MWR2096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pantillon, F., J.-P. Chaboureau, C. Lac, and P. Mascart, 2013: On the role of a Rossby wave train during the extratropical transition of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 139, 370386, https://doi.org/10.1002/qj.1974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papin, P., 2017: Variations in potential vorticity streamer activity: Development pathways, environmental impacts, and links to tropical cyclone activity in the North Atlantic basin. Ph.D. dissertation, University at Albany, 225 pp. https://search.proquest.com/docview/1978476273.

  • Peirano, C. M., K. L. Corbosiero, and B. H. Tang, 2016: Revisiting trough interactions and tropical cyclone intensity change. Geophys. Res. Lett., 43, 55095515, https://doi.org/10.1002/ 2016GL069040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97, 457482, https://doi.org/10.1002/qj.49709741407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohorsky, R., M. Röthlisberger, C. M. Grams, J. Riboldi, and O. Martius, 2019: The climatological impact of recurving North Atlantic tropical cyclones on downstream extreme precipitation events. Mon. Wea. Rev., 147, 15131532, https://doi.org/10.1175/MWR-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinting, J. F., and S. C. Jones, 2016: On the impact of tropical cyclones on Rossby wave packets: A climatological perspective. Mon. Wea. Rev., 144, 20212048, https://doi.org/10.1175/MWR-D-14-00298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riboldi, J., C. M. Grams, M. Riemer, and H. M. Archambault, 2019: A phase locking perspective on Rossby wave amplification and atmospheric blocking downstream of recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 147, 567589, https://doi.org/10.1175/MWR-D-18-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2010: The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617637, https://doi.org/10.1002/qj.605.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2014: Interaction of a tropical cyclone with a high-amplitude, midlatitude wave pattern: Waviness analysis, trough deformation, and track bifurcation. Quart. J. Roy. Meteor. Soc., 140, 13621376, https://doi.org/10.1002/qj.2221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2003: Simulations of the extratropical transition of tropical cyclones: Contributions by the midlatitude upper-level trough to reintensification. Mon. Wea. Rev., 131, 21122128, https://doi.org/10.1175/1520-0493(2003)131<2112:SOTETO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical cyclones. Mon. Wea. Rev., 135, 862876, https://doi.org/10.1175/MWR3303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheck, L., S. C. Jones, and M. Juckes, 2011: The resonant interaction of a tropical cyclone and a tropopause front in a barotropic model. Part II: Frontal waves. J. Atmos. Sci., 68, 420429, https://doi.org/10.1175/2010JAS3483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., 2016: A climatology of multiple tropical cyclone events. J. Climate, 29, 48614883, https://doi.org/10.1175/JCLI-D-15-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., 2017: Are multiple tropical cyclone events similar among basins? J. Climate, 30, 58055813, https://doi.org/10.1175/JCLI-D-17-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., and R. E. Hart, 2015: An examination of the thermodynamic impacts of western North Pacific tropical cyclones on their tropical tropospheric environment. J. Climate, 28, 75297560, https://doi.org/10.1175/JCLI-D-14-00780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, https://doi.org/10.1175/BAMS-D-11-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2016: Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts. Mon. Wea. Rev., 144, 34873506, https://doi.org/10.1175/MWR-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2015: Comparison of wave packets associated with extratropical transition and winter cyclones. Mon. Wea. Rev., 143, 17821803, https://doi.org/10.1175/MWR-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, V., M. Riemer, E. K. Chang, and O. Martius, 2018: Rossby wave packets on the midlatitude waveguide—A review. Mon. Wea. Rev., 146, 19652001, https://doi.org/10.1175/MWR-D-16-0483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Z. Wang, 2018: North Atlantic extratropical Rossby wave breaking during the warm season: Wave life cycle and role of diabatic heating. Mon. Wea. Rev., 146, 695712, https://doi.org/10.1175/MWR-D-17-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, T. J. Dunkerton, M. S. Peng, and G. Magnusdottir, 2016: Extratropical impacts on Atlantic tropical cyclone activity. J. Atmos. Sci., 73, 14011418, https://doi.org/10.1175/JAS-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, M. Peng, and G. Magnusdottir, 2017: Characteristics and impacts of extratropical Rossby wave breaking during the Atlantic hurricane season. J. Climate, 30, 23632379, https://doi.org/10.1175/JCLI-D-16-0425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 63 63 16
Full Text Views 13 13 6
PDF Downloads 14 14 5

A Climatology of Indirect Tropical Cyclone Interactions in the North Atlantic and Western North Pacific Basins

View More View Less
  • 1 Atmospheric Science Program, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
© Get Permissions
Restricted access

Abstract

While it is understood that a recurving tropical cyclone (TC) that interacts with the midlatitude flow can cause large changes to the midlatitude flow pattern, it is much less understood if, and how, such events could impact a downstream tropical cyclone. Here, an indirect TC interaction is defined as one in which a primary TC perturbs the downstream midlatitude waveguide within one synoptic-scale wavelength of a secondary TC. In this study, a climatology and composite analysis using ERA-Interim reanalysis data is completed for all indirect interactions occurring between two tropical and/or subtropical cyclones in the North Atlantic and western North Pacific basins between 1989 and 2018. In all, 26 cases are identified in the North Atlantic and 56 cases are identified in the western North Pacific. The composite-mean interaction between a primary TC and upstream trough amplifies the immediate downstream ridge, increasing the tropospheric-deep vertical wind shear on its poleward and, in the western North Pacific, eastern, and equatorward flanks. An amplified downstream trough is detectable farther downstream in the western North Pacific 1–2 days after interaction onset; however, the same is not true in the North Atlantic, in which some cases exhibit anticyclonic Rossby wave breaking of the immediate downstream ridge. Secondary TCs that weaken following the indirect-interaction events are primarily located along the gradient between the downstream ridge and trough (North Atlantic) or at high latitudes (western North Pacific); those that strengthen are primarily located equatorward of the downstream ridge, particularly in the western North Pacific.

Corresponding author: Kevin Prince, kprince@uwm.edu

Abstract

While it is understood that a recurving tropical cyclone (TC) that interacts with the midlatitude flow can cause large changes to the midlatitude flow pattern, it is much less understood if, and how, such events could impact a downstream tropical cyclone. Here, an indirect TC interaction is defined as one in which a primary TC perturbs the downstream midlatitude waveguide within one synoptic-scale wavelength of a secondary TC. In this study, a climatology and composite analysis using ERA-Interim reanalysis data is completed for all indirect interactions occurring between two tropical and/or subtropical cyclones in the North Atlantic and western North Pacific basins between 1989 and 2018. In all, 26 cases are identified in the North Atlantic and 56 cases are identified in the western North Pacific. The composite-mean interaction between a primary TC and upstream trough amplifies the immediate downstream ridge, increasing the tropospheric-deep vertical wind shear on its poleward and, in the western North Pacific, eastern, and equatorward flanks. An amplified downstream trough is detectable farther downstream in the western North Pacific 1–2 days after interaction onset; however, the same is not true in the North Atlantic, in which some cases exhibit anticyclonic Rossby wave breaking of the immediate downstream ridge. Secondary TCs that weaken following the indirect-interaction events are primarily located along the gradient between the downstream ridge and trough (North Atlantic) or at high latitudes (western North Pacific); those that strengthen are primarily located equatorward of the downstream ridge, particularly in the western North Pacific.

Corresponding author: Kevin Prince, kprince@uwm.edu
Save